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Introduction: Obstructive sleep apnoea (OSA) is a multisystem, debilitating,

chronic disorder of breathing during sleep, resulting in a relatively consistent

pattern of cognitive deficits. More recently, it has been argued that those cognitive

deficits, especially in middle-aged patients, may be driven by cardiovascular

and metabolic comorbidities, rather than by distinct OSA-processes, such as

are for example ensuing nocturnal intermittent hypoxaemia, oxidative stress,

neuroinflammation, and sleep fragmentation.

Methods: Thus, we undertook to define cognitive performance in a group of

27 middle-aged male patients with untreated OSA, who had no concomitant

comorbidities, compared with seven matched controls (AHI mean ± S.D.: 1.9 ±

1.4 events/h; mean age 34.0 ± 9.3 years; mean BMI 23.8 ± 2.3 kg/m2). Of the 27

patients, 16 had mild OSA (AHI mean ± S.D.:11.7 ± 4.0 events/h; mean age 42.6

± 8.2 years; mean BMI 26.7 ± 4.1 kg/m2), and 11 severe OSA (AHI 41.8 ± 20.7

events/h; age: 46.9 ± 10.9 years, BMI: 28.0 ± 3.2 kg/m2).

Results: In our patient cohort, we demonstrate poorer executive-functioning,

visuospatial memory, and deficits in vigilance sustained attention, psychomotor

and impulse control. Remarkably, we also report, for the first time, e�ects on social

cognition in this group of male, middle-aged OSA patients.

Conclusion: Our findings suggest that distinct, OSA-driven processes may be

su�cient for cognitive changes to occur as early as in middle age, in otherwise

healthy individuals.
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1. Introduction

Obstructive sleep apnoea (OSA) is a multisystem, debilitating, chronic disorder of

breathing during sleep, resulting in a relatively consistent pattern of cognitive deficits

(Rosenzweig et al., 2015; Bucks et al., 2017), particularly in attention, executive function and

episodic memory (Bucks et al., 2017). Moreover, there is a high prevalence of depression,
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anxiety and other psychiatric problems, which are only partially

remediated by treatment (Rosenzweig et al., 2015; Bucks et al.,

2017).

Cognitive functions traditionally comprise broad domains of

attention and memory, as well as those of higher order cognitive

skills such as planning, problem-solving, and mental flexibility

(grouped together as executive function), visuospatial abilities,

processing speed, and both expressive and receptive language

(Esther Strauss, 2006; Bucks et al., 2017; Rosenzweig et al., 2022).

Historically, a body of work has suggested significant impact of

OSA on: attention and vigilance, long-term verbal and visual

memory, expressive and receptive language (Bucks et al., 2013;

Wallace and Bucks, 2013), and visuo-spatial and constructional

abilities (Bucks et al., 2013). Similarly, deficits in the executive

domain have also been demonstrated (Olaithe and Bucks, 2013;

Bucks et al., 2017), with somewhat less uniform evidence for

short-term memory deficits (Rosenzweig et al., 2022). However,

cognitive domains are not unitary constructs, and only judiciously

deconstructed analysis of their different sub-capacities and their

vulnerabilities to a range of risks and protective factors specific to

OSA can provide a more accurate appraisal of a patient’s deficits

(Rosenzweig et al., 2017, 2022).

Accordingly, OSA’s bidirectional link to neurodegenerative

disorders, including Alzheimer’s disorder (AD), has similarly

highlighted the importance of disentangling some of the major

cognitive neuromechanisms at play (Ancoli-Israel et al., 2008;

Cooke et al., 2009; Osorio et al., 2015; Bubu et al., 2022). However,

the links between severity of OSA, historically indexed by apnea-

hypopnea index (AHI) or respiratory disturbance index (RDI), or

by indices of hypoxia severity, sleep fragmentation, or sleepiness

(Pépin et al., 2005; Bucks et al., 2017), and the severity of the

cognitive deficits observed, are far from being well understood (for

more in-depth review please refer to Aloia et al., 2004; Olaithe

and Bucks, 2013; Wallace and Bucks, 2013; Gagnon et al., 2014;

Rosenzweig et al., 2015; Bucks et al., 2017). Similarly poorly

understood, is the link between the timing of the hypoxia or arousal

during each sleep cycle, and the severity or the cognitive phenotype

(Rosenzweig et al., 2015).

Moreover, the link between cognition, OSA, and aging, has

proven equally difficult to fully discern (Rosenzweig et al., 2022).

For instance, aging is known to be independently linked with

physiological changes that may predispose to OSA (Rosenzweig

et al., 2022). It has been proposed that this may be in part due to

changes in upper airway morphology that can lead to a reduction

in upper airway dilator muscle function at sleep onset (Bucks

et al., 2017), contributing to an age-related propensity for upper

airway collapse in response to negative pressure (Kirkness et al.,

2008) independent of body mass index (Eikermann et al., 2007;

Rosenzweig et al., 2022). Against this background, it has been

argued that some of these aging-associated processes may underlie

the failure to find a consistent relationship between the severity

of OSA and the risk of cognitive impairment (Bucks et al., 2017;

Rosenzweig et al., 2022).

This evident polymorphic picture is further compounded by

the fact that not everyone with OSA is cognitively impaired (Quan

et al., 2006), with the individual’s cognitive reserve (Alchanatis

et al., 2005; Sforza et al., 2010; Bucks et al., 2013; Martin et al.,

2015; Olaithe et al., 2015; Schembri et al., 2017) and their

genetic risk (Cosentino et al., 2008; Nikodemova et al., 2013) for

neurodegenerative decline (Bucks et al., 2017) possibly also playing

an important role (Rosenzweig et al., 2022).

Taken together, it has been proposed that only middle-aged

patients with OSA may demonstrate a consistent pattern of

cognitive deficits, otherwise lacking in older patients (Bubu et al.,

2020). Notably, it has also been argued that deficits are principally

driven by common cardiovascular and metabolic comorbidities,

rather than by distinct OSA-processes (Bubu et al., 2020). In further

support of this, patients with OSA invariably present with already

established comorbidities, such as overweight or obesity, sleepiness

in passive situations or while driving, and are often affected by

systemic hypertension, type 2 diabetes, and dyslipidemia (Levy

et al., 2015), making it in most cases impossible to delineate the

specific contribution of all associated risks to the resulting cognitive

presentation (Bonsignore et al., 2019; Bubu et al., 2020; Rosenzweig

et al., 2022).

Whether OSA itself, or these common comorbidities drive the

cognitive effects has wide ranging clinical implications, and may

impact future clinical guidelines with treatment of comorbidities

taking precedence over treatment of the core determinants of

neuropathological process in OSA, such as sleep fragmentation

(Jordan et al., 2014), sleep disruption and blood gas abnormalities

(Olaithe et al., 2018).

To this end, and in order to clarify whether, independent

of concomitant metabolic or cardiovascular comorbidities, OSA-

induced injury (Rosenzweig et al., 2015) may present with

abnormal functional outcomes (Bubu et al., 2020; Rosenzweig et al.,

2022), we undertook a proof of the concept study and set to define

the cognitive pattern in a (rare) group ofmale, middle-aged patients

with untreated OSA who present without comorbidities, compared

to matched controls.

2. Methods

Preliminary analysis of cognitive parameters in patients

with different OSA severities was undertaken as a part of the

multimodal clinical study InCOSA (Clinical.Trials.gov, identifier:

NCT02967536). All experimental protocols were approved by the

U.K. Research Ethics Committee [Integrated Research Application

System (IRAS): IRAS-Project-ID-170912; REC-REF16/L0/0893]

and informed consent for study participation was obtained from

all participants. Due to the nature of several investigations in the

overarching multimodal clinical study, some of which are known to

have significant sex and gender differences, only male participants

were included. Thus, 27 male adult (35–70 years-old), non-obese

[body-mass-index (BMI)< 30 kg/m2], mildly somnolent [Epworth

Sleepiness Scale (ESS); 5 > ESS < 15] patients with no current

or past co-morbidities, and no current or past alcohol or smoking

history, with a de novo diagnosis of OSA according to ICSD criteria

(American Academy of Sleep Medicine, 2014), and a group of

healthy sex- and education-matched individuals were identified, as

previously described (Gnoni et al., 2021) (Supplementary material).

All methods were carried out in accordance with relevant UK and

international guidelines and regulations.

All participants underwent a domiciliary respiratory testing

via WatchPAT system (https://www.itamar-medical.com/), as

previously described (Walter et al., 2023). Additionally, patients

also underwent a video-polysomnography (vPSG) in the sleep
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center. Full night vPSG recordings were based on the international

10:20 system; for purposes of the PSG scoring, six EEG channels

(i.e., F3, F4, C3, C4, O1, and O2) were referenced to the

mastoid, and used along with electrooculography, submental-

electromyography, respiratory inductance plethysmography, nasal

pressure sensor, oronasal thermistor, pulse-oximeter, two-lead

electrocardiogram, body position detector and synchronized audio-

visual recording, as previously described (Rosenzweig et al., 2016).

The scoring was carried out according to AASM rules (Berry et al.,

2017), and as previously described (Rosenzweig et al., 2016). Eleven

cognitive domains were pre-selected (Bucks et al., 2017), based

on previous reports of OSA- and depression-related deficits, and

assessed via 23 automated Cambridge-Neuropsychological-Test-

Automated-Battery (CANTAB) tests.

2.1. Cambridge neuropsychological test
automated battery

CANTAB is a highly sensitive, validated touchscreen-based

cognitive assessment. In this study, 11 domains were tested

with the following tests (for more in-depth explanations please

refer to Supplementary material). Reaction Time Task (RTT)

(Cognition, n.d.a) tests reaction time, movement time, and

vigilance, which are associated with motor pathway and right

anterior hemispheric functioning (Coull et al., 1998). Spatial

Working Memory (SWM) tests (Cognition, n.d.b) the retention and

manipulation of visuospatial data in non-verbal and visuospatial

working memory (Cognition, n.d.b), which are associated with

frontal lobe function. Pattern Recognition Memory (PRM) tests

(Cognition, n.d.a) short-term visual memory in a two choice

forced discrimination paradigm in both immediate and delayed

conditions, which are associated with frontoparietal and posterior

parietal function (Pessoa et al., 2002; Todd and Marois, 2004).

The Emotion Recognition Task (ERT) (Cognition, n.d.c) assesses

social cognition and emotion recognition (Glenthøj et al., 2019),

which are associated with the limbic system, inferior frontal gyrus,

parietal lobe, cingulate cortex and inferior and middle temporal

lobe functioning (Keightley et al., 2011). Participants are shown

a computer-generated face for 200ms, after which the emotion

displayed by the face must be selected from six options, i.e., sadness,

happiness, fear, anger, disgust, and surprise. The outcomemeasures

are the median reaction time and the total number of correct

TABLE 1 Socio-demographic and clinical characteristics.

HC Mild OSA Severe OSA Control vs.
Mild OSA

Control vs.
Severe OSA

Mild OSA vs.
Severe OSA

(n = 7) (n = 16) (n = 11) P P P

Age (years)a Mean (SD) 34.0 (9.3) 42.6 (8.2) 46.9 (10.9) 0.0380 0.0199 0.2484

BMI (kg/m2)a Mean (SD) 23.8 (2.3) 26.7 (4.1) 28.0 (3.2) 0.0957 0.0094 0.4137

AHIa Mean (SD) 1.9 (1.4) 11.7 (4.0) 41.8 (20.7) <0.0001 0.0001 <0.0001

Ethnicityb 0.6971 0.5769 0.1986

Caucasian n (%) 5 (71.4) 13 (81.3) 7 (63.6)

Asian n (%) 2 (28.6) 2 (12.5) 1 (9.1)

Indian n (%) 0 (0.0) 1 (6.3) 0 (0.0)

Afro-Caribbean n (%) 0 (0.0) 0 (0.0) 2 (18.2)

Middle east n (%) 0 (0.0) 0 (0.0) 1 (9.1)

Smokingb 0.1243 1.0000 0.0535

Ex-smoker n (%) 0 (0.0) 6 (37.5) 0 (0.0)

Non-smoker n (%) 7 (100.0) 10 (62.5) 11 (100.0)

Smoker n (%) 0 (0.0) 0 (0.0) 0 (0.0)

Educationb 0.0735 0.2450 0.1614

Undergrade n (%) 2 (28.6) 11 (68.8) 4 (36.4)

Graduate n (%) 5 (71.4) 3 (18.7) 6 (54.5)

A level n (%) 0 (0.0) 2 (12.5) 1 (9.1)

Age at leaving educationa Mean (SD) 25.6 (4.1) 22.5 (3.2) 26.3 (9.3) 0.0627 0.8535 0.2184

Exercise regularlyc 0.1243 0.2450 0.6924

No n (%) 0 (0.0) 6 (37.5) 3 (27.3)

Yes n (%) 7 (100.0) 10 (62.5) 8 (72.7)

aT-test for independent samples.
bFisher-Freeman-Halton’s exact test.
cFisher’s exact test.
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TABLE 2 Estimated marginal means of analyzed clinical parameters controlled for the influence of age and BMI (two-way ANCOVA).

Dependent variable Group

Control
n = 7

Mild OSA
n = 16

Severe OSA
n = 11

Mean SEM 95% CI Mean SEM 95% CI Mean SEM 95% CI

Lower Upper Lower Upper Lower Upper

ASTLSWMD 564.45 48.30 464.98 663.93 758.77 31.92 693.04 824.50 789.18 41.22 704.30 874.07

ASTLCMD 702.94 36.67 627.42 778.46 626.88 24.23 576.97 676.78 520.67 31.29 456.22 585.11

ERTOMDRT 1,939.65 195.30 1,537.41 2,341.88 1,398.66 129.05 1,132.88 1,664.44 1,133.05 166.66 789.80 1,476.29

ERTTH 48.92 3.96 40.76 57.09 57.49 2.62 52.10 62.89 64.89 3.38 57.92 71.85

PALTEA 14.76 4.22 6.06 23.46 14.63 2.79 8.88 20.37 9.24 3.60 1.82 16.66

PALFAMS 5.45 1.49 2.38 8.52 4.81 0.98 2.78 6.84 7.35 1.27 4.73 9.97

PRMPCI 99.78 3.15 93.30 106.25 91.98 2.08 87.70 96.26 96.58 2.68 91.05 102.11

PRMPCD 78.29 5.58 66.79 89.78 88.51 3.69 80.91 96.10 88.17 4.76 78.36 97.98

RTIFDMRT 391.42 12.82 365.02 417.82 384.78 8.47 367.34 402.23 349.17 10.94 326.65 371.70

RTIFMMT 266.90 13.47 239.17 294.64 240.85 8.90 222.52 259.17 197.59 11.49 173.92 221.25

SWMBE 23.81 4.60 14.33 33.28 19.05 3.04 12.79 25.31 14.58 3.93 6.49 22.66

SWMS 5.59 1.25 3.03 8.16 4.47 0.82 2.77 6.16 5.51 1.06 3.32 7.70

SSPSFSL 5.81 0.53 4.71 6.91 6.91 0.35 6.18 7.64 7.60 0.46 6.66 8.54

SSPRSL 5.91 0.57 4.73 7.09 6.57 0.38 5.79 7.35 7.39 0.49 6.38 8.40

OTSPSFC 10.28 1.10 8.02 12.55 12.10 0.73 10.60 13.59 12.33 0.94 10.40 14.26

DMSPC 91.32 2.62 85.93 96.70 91.83 1.73 88.27 95.39 89.01 2.23 84.41 93.60

DMSMDLAD 4,835.06 332.58 4,150.11 5,520.01 3,188.90 219.75 2,736.31 3,641.50 2,466.32 283.80 1,881.82 3,050.82

DMSPEGE 0.04 0.06 −0.09 0.17 0.04 0.04 −0.05 0.12 0.09 0.05 −0.02 0.20

RVPA 0.90 0.02 0.85 0.95 0.92 0.02 0.88 0.95 0.95 0.02 0.91 0.99

RVPMDL 657.81 68.07 517.61 798.01 494.93 44.98 402.29 587.57 421.81 58.09 302.17 541.45

SSTSSRT 256.98 14.51 227.09 286.86 239.52 9.59 219.77 259.27 218.15 12.38 192.64 243.65

Covariates appearing in the model are evaluated at the following values: Age= 41.59 years, BMI= 26.78 kg/m2 .

RTIFDMRT, Median duration between stimulus onset and release of button; RTIFMMT, Mean time taken to touch stimulus after button release; SWMBE, Between errors—number of times

that a box in which a token has been previously found is revisited; SWMS, Number of distinct boxes used for the subject to begin new search for a token; PRMPCI, Number of correct responses

made in immediate condition; PRMPCD, Number of correct responses made in delayed condition; ERTOMDRT, Median latency of response from stimulus onset to subject response; ERTTH,

Number of correctly answered responses; ASTSWMD,Median latency of response in rule switching trials; ASTLCMD,Median latency of response on congruent trials; SSPFSL, Longest sequence

successfully recalled—forward variant; SSPRSL, Longest sequence successfully recalled—reversed variant; PALTEA, Number of times incorrect box is chosen + adjusted estimated number of

errors that would have been made on any problems, attempts, and recalls that were not reached; PALFAMS, Number of correct box choices made on first attempt; DMSPC, Percentage of

assessment trials during which subject selected the correct box on their first box choice; DMSMDLAD, Median latency from the available choices being displayed to the subject choosing the

correct choice; DMSPEGE, Reports the probability of an error occurring when the previous trial was responded incorrectly; RVPMDL, Median response latency during assessment sequence

blocks where the subject responded correctly; RVPA, Measure of how good the subject is at detecting target sequences; SSTSSRT, Length of time between the go stimulus and the stop stimulus

at which the subject is able to successfully inhibit their response on 50% of the trials; OTSPSFC, Number of assessment problems on which the first box choice made was correct.

answers (Cognition, n.d.c). People with depression are likely to

provide more negative ratings of emotional expression, reflecting

the well-known negative bias seen in depression (Cognition, n.d.c).

During testing, brief presentation encourages implicit processing,

as opposed to conscious appraisal of the faces (Cognition,

n.d.c). Conversely, in individuals at ultra-high risk of developing

psychosis, longer emotion recognition latency, rather than lower

accuracy has been demonstrated (Glenthøj et al., 2019). The

Attention Switching Task (AST) (Cognition, n.d.d) tests executive

functioning and cued attentional set-shifting, which are functions

of the medial frontal structures and the anterior right hemisphere

(Bench et al., 1993). Spatial Span Memory (SSP) (Cognition,

n.d.d) assesses visuospatial working memory capacity which is

associated with frontoparietal function (Jones and Berryhill, 2012;

Ester et al., 2015). The Paired Associates Learning (PAL) tests

(Cognition, n.d.e) episodic visuospatial memory and associative

learning, which are predominantly functions of the temporal lobe.

One Touch Stockings of Cambridge (OTS) (Cognition, n.d.f) tests

spatial planning and working memory and it is a measure of

dorsolateral prefrontal cortex function (Goldman-Rakic, 1995).

Delayed Matching to Sample (DMS) (Cognition, n.d.g) assesses

both simultaneous visual matching ability and short-term visual

recognition memory, for non-verbalizable patterns, which is

associated with medial temporal lobe function (Lavenex et al., 2002;

Lee et al., 2005). The Rapid Visual Information Processing (RVP)

(Cognition, n.d.g) is a measure of sustained attention, associated
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TABLE 3 Summary of statistical analysis (two-way ANCOVA with Bonferroni’s correction for multiple comparisons) for all CANTAB behavioral tasks and

all pair-wise comparisons between groups (control, mild OSA, and severe OSA).

Pairwise comparisons Predicted (LS) mean
di�.

95% CI of di�. Below
threshold

Summary Adjusted
P-value

E�ect size

Lower Upper

ASTLSWMD

Control vs. mild −194.32 −345.94 −42.71 Yes ∗∗ 0.0090 −1.521

Control vs. severe −224.73 −400.66 −48.80 Yes ∗∗ 0.0090 −1.698

Mild vs. severe −30.41 −161.65 100.83 No ns 1.0000 −0.230

ASTLCMD

Control vs. mild 76.07 −39.03 191.17 No ns 0.3070 0.784

Control vs. severe 182.28 48.71 315.84 Yes ∗∗ 0.0050 1.815

Mild vs. severe 182.28 6.57 205.84 Yes ∗ 0.0340 1.058

ERTOMDRT

Control vs. mild 540.99 −72.07 1,154.05 No ns 0.0970 1.047

Control vs. severe 806.60 95.22 1,517.98 Yes ∗ 0.0220 1.508

Mild vs. severe 265.61 −265.06 796.29 No ns 0.6320 0.497

ERTTH

Control vs. mild −8.57 −21.01 3.87 No ns 0.2680 −0.830

Control vs. severe −15.96 −30.40 −1.53 Yes ∗ 0.0270 −1.470

Mild vs. severe −7.39 −18.16 3.38 No ns 0.2710 −0.681

PALTEA

Control vs. mild 0.13 −13.12 13.39 No ns 1.0000 0.012

Control vs. severe 5.52 −9.86 20.90 No ns 1.0000 0.477

Mild vs. severe 5.39 −6.09 16.86 No ns 0.7190 0.466

PALFAMS

Control vs. mild 0.64 −4.03 5.32 No ns 1.0000 0.163

Control vs. severe −1.90 −7.33 3.53 No ns 1.0000 −0.465

Mild vs. severe −2.54 −6.59 1.51 No ns 0.3590 −0.623

PRMPCI

Control vs. mild 7.80 −2.08 17.67 No ns 0.1610 0.937

Control vs. severe 3.19 −8.26 14.65 No ns 0.5380 0.371

Mild vs. severe −4.60 −13.15 3.95 No ns 0.5380 −0.534

PRMPCD

Control vs. mild −10.22 −27.74 7.30 No ns 0.4410 −0.692

Control vs. severe −9.88 −30.21 10.44 No ns 0.6710 −0.647

Mild vs. severe 0.33 −14.83 15.50 No ns 1.0000 0.022

RTIFMDRT

Control vs. mild 6.64 −33.59 46.87 No ns 1.0000 0.196

Control vs. severe 42.25 −4.44 88.94 No ns 0.0860 1.203

Mild vs. severe 35.61 0.78 70.44 Yes ∗ 0.0440 1.015

RTIFMMT

Control vs. mild 26.05 −16.22 68.32 No ns 0.3790 0.732

Control vs. severe 69.31 20.26 118.36 Yes ∗∗ 0.0040 1.879

Mild vs. severe 43.26 6.67 79.85 Yes ∗ 0.0170 1.173

(Continued)
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TABLE 3 (Continued)

Pairwise comparisons Predicted (LS) mean
di�.

95% CI of di�. Below
threshold

Summary Adjusted
P-value

E�ect size

Lower Upper

SWMBE

Control vs. mild 4.76 −9.68 19.20 No ns 1.0000 1.443

Control vs. severe 9.23 −7.52 25.99 No ns 1.0000 2.703

Mild vs. severe 4.47 −8.02 16.97 No ns 1.0000 1.311

SWMS

Control vs. mild 1.13 −2.79 5.04 No ns 1.0000 0.797

Control vs. severe 0.08 −4.46 4.63 No ns 1.0000 0.058

Mild vs. severe −1.04 −4.43 2.35 No ns 1.0000 −0.711

SSPFSL

Control vs. mild −1.10 −2.78 0.58 No ns 0.3140 −0.726

Control vs. severe −1.79 −3.74 0.16 No ns 0.0790 −1.140

Mild vs. severe −0.69 −2.14 0.76 No ns 0.7030 −0.439

SSPRSL

Control vs. mild −0.66 −2.46 1.14 No ns 1.0000 −0.227

Control vs. severe −1.47 −3.56 0.61 No ns 0.2460 −0.490

Mild vs. severe −0.82 −2.37 0.74 No ns 0.5740 −0.271

OTSPSFC

Control vs. mild −1.82 −5.27 1.63 No ns 0.5660 −0.559

Control vs. severe −2.05 −6.05 1.96 No ns 0.6050 −0.615

Mild vs. severe −0.23 −3.22 2.76 No ns 1.0000 −0.125

DMSPC

Control vs. mild −0.52 −8.72 7.69 No ns 1.0000 −0.075

Control vs. severe 2.31 −7.22 11.83 No ns 1.0000 0.322

Mild vs. severe 2.82 −4.28 9.93 No ns 0.9530 0.395

DMSMDLAD

Control vs. mild 1,646.16 602.20 2,690.12 Yes ∗ ∗ ∗ 0.0009 1.872

Control vs. severe 2,368.74 1,157.36 3,580.13 Yes ∗ ∗ ∗ 0.0008 2.600

Mild vs. severe 722.59 −181.08 1,626.25 No ns 0.1520 0.793

DMSPEGE

Control vs. mild 0.00 −0.19 0.20 No ns 1.0000 0.061

Control vs. severe −0.05 −0.27 0.18 No ns 1.0000 −2.809

Mild vs. severe −0.05 −0.22 0.12 No ns 1.0000 −2.869

RVPA

Control vs. mild −0.02 −0.09 0.06 No ns 1.0000 −0.260

Control vs. severe −0.05 −0.14 0.04 No ns 0.5920 −0.693

Mild vs. severe −0.03 −0.10 0.04 No ns 0.7830 −0.442

RVPMDL

Control vs. mild 162.88 −50.81 376.56 No ns 0.1850 0.905

Control vs. severe 236.00 −11.96 483.96 No ns 0.0660 1.265

Mild vs. severe 73.12 −111.85 258.10 No ns 0.9600 0.392

(Continued)
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TABLE 3 (Continued)

Pairwise comparisons Predicted (LS) mean
di�.

95% CI of di�. Below
threshold

Summary Adjusted
P-value

E�ect size

Lower Upper

SSTSSRT

Control vs. mild 17.46 −28.09 63.01 No ns 1.0000 0.455

Control vs. severe 38.83 −14.03 91.69 No ns 0.2130 0.977

Mild vs. severe 21.37 −18.06 60.80 No ns 0.5300 0.538

∗P < 0.05.
∗∗P < 0.01.
∗∗∗P < 0.001.

All values are evaluated at the following values: Age= 41.59 years, BMI= 26.78 kg/m2 .

CANTAB tests (23 tests in 11 modalities) for controls, mild OSA and severe OSA. RTIFDMRT, Median duration between stimulus onset and release of button; RTIFMMT, Mean time taken

to touch stimulus after button release; SWMBE, Between errors—number of times that a box in which a token has been previously found is revisited; SWMS, Number of distinct boxes used

for the subject to begin new search for a token; PRMPCI, Number of correct responses made in immediate condition; PRMPCD, Number of correct responses made in delayed condition;

ERTOMDRT, Median latency of response from stimulus onset to subject response; ERTTH, Number of correctly answered responses; ASTSWMD, Median latency of response in rule switching

trials; ASTLCMD, Median latency of response on congruent trials; SSPFSL, Longest sequence successfully recalled—forward variant; SSPRSL, Longest sequence successfully recalled—reversed

variant; PALTEA, Number of times incorrect box is chosen + adjusted estimated number of errors that would have been made on any problems, attempts, and recalls that were not reached;

PALFAMS, Number of correct box choices made on first attempt; DMSPC, Percentage of assessment trials during which subject selected the correct box on their first box choice; DMSMDLAD,

Median latency from the available choices being displayed to the subject choosing the correct choice; DMSPEGE, Reports the probability of an error occurring when the previous trial was

responded incorrectly; RVPMDL, Median response latency during assessment sequence blocks where the subject responded correctly; RVPA, Measure of how good the subject is at detecting

target sequences; SSTSSRT, Length of time between the go stimulus and the stop stimulus at which the subject is able to successfully inhibit their response on 50% of the trials; OTSPSFC,

Number of assessment problems on which the first box choice made was correct; ns, non significant.

with frontoparietal function (Sarter et al., 2001). Stop Signal Task

(SST) (Cognition, n.d.h) is a test of impulse control and response

inhibition associated with prefrontal cortex function (Sarter et al.,

2001).

2.2. Statistical analyses

Group differences were analyzed with 2-way ANCOVA,

corrected for multiple comparisons using Bonferroni test

with additional pairwise tests. Age and BMI are used as

covariates in the ANCOVA model and are evaluated at the

following values: Age = 41.59 years, BMI = 26.78 kg/m2.

Differences in socio-demographic characteristics are evaluated

with t-test for independent samples (continuous variables)

and Fisher’s exact test or Fisher-Freeman-Halton’s exact

test (categorical variables). All P-values below 0.05 were

considered significant. MedCalc
R©

Statistical Software version

20.216 (MedCalc Software Ltd., Ostend, Belgium; https://

www.medcalc.org; 2023) was used in statistical analysis and

graphical presentations.

3. Results

Twenty-seven OSA patients and seven healthy controls (see

Table 1) completed the CANTAB (Table 2). Of the 27 patients, 16

were diagnosed with mild OSA (AHI mean ± S.D.:11.7 ± 4.0

events/h; mean age 42.6 ± 8.2 years; mean BMI 26.7 ± 4.1 kg/m2),

and 11 with severe OSA (AHI 41.8 ± 20.7 events/h; age: 46.9 ±

10.9 years, BMI: 28.0 ± 3.2 kg/m2), according to ICSD criteria

(American Academy of Sleep Medicine, 2014).

The cognitive findings for the whole set of behavioral readouts

for the three experimental groups (control, mild OSA, and severe

OSA), controlled for age and BMI and grouped into CANTAB

sub-tests are shown in Table 3. Distinct deficits were observed in

the tests investigating cognitive domains of vigilance, executive

functioning, short-term visual recognition memory and social

and emotion recognition, with the greatest number of differences

between controls and those with severe OSA. Whilst subjects with

mild OSA performed better than those with severe OSA on most

of those same tasks, they were rarely worse than controls (see

Figure 1).

The most significant deficits, by comparison to the control

group, were demonstrated in the tests that assess both

simultaneous visual matching ability and short-term visual

recognition memory for non-verbalizable patterns (Figure 1;

DMS), tests of executive functioning and cued attentional

set shifting (Figure 1; AST), in vigilance and psychomotor

functioning (RTT), and lastly, in social cognition and emotion

recognition (ERT).

For full details of the cognitive findings please refer to Tables 2,

3 and Supplementary material.

4. Discussion

We report a distinct pattern of circumscribed cognitive deficits

in middle-aged male patients with severe OSA, in the absence

of any overt neuropsychiatric, cardiovascular or metabolic co-

morbidities (Bubu et al., 2020). The findings are largely in

keeping with previous studies of OSA patients with associated

multiple comorbidities that similarly showed aberrant executive-

functioning, visuospatial short-term-memory, deficits in vigilance

and psychomotor control (Bucks et al., 2017; Rosenzweig et al.,

2022). Thus, arguably, our findings suggest that distinct OSA-

driven processes, particularly when OSA is severe, may be sufficient

for cognitive changes to occur as early as middle age, in otherwise

healthy male individuals.
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FIGURE 1

Violin plots depict results of significant CANTAB tests’ findings for controls, mild OSA and severe OSA. When controlled for the influence of age and

BMI, out of all CANTAB modalities (23 tests in 11 modalities), only Emotion Recognition Task, Attention Switching Task, Reaction Time and Delayed

Matching to Sample showed significant di�erences between the groups, mainly between controls and severe OSA. Dots, squares and triangles show

individual values (control, mild OSA and severe OSA, respectively). Thick dashed lines inside violins indicate group median, with thinner dashed lines

indicating quartiles (*P < 0.05, **P < 0.01, ***P < 0.0001; two-way ANCOVA with Bonferroni’s correction for multiple comparisons controlled for

age and BMI). RTIFDMRT, Median duration between stimulus onset and release of button; RTIFMMT, Mean time taken to touch stimulus after button

release; ERTOMDRT, Median latency of response from stimulus onset to subject response; ERTTH, Number of correctly answered responses;

ASTSWMD, Median latency of response in rule switching trials; ASTLCMD, Median latency of response on congruent trials; DMSPC, Percentage of

assessment trials during which subject selected the correct box on their first box choice; DMSMDLAD, Median latency from the available choices

being displayed to the subject choosing the correct choice.

Remarkably, we also report, for the first time, diminished

social cognition in this group of middle-aged severe OSA

patients. Social and emotional cognition is an important ability

to interpret and identify socially relevant information, known to

be impaired in several psychiatric conditions, including major

depressive disorder, and thought to be strongly associated with

sleep physiology (Gujar et al., 2011; Weightman et al., 2014).

In past studies, sleep deprivation has been shown to selectively

impair the accurate judgment of human facial emotions, especially

threat relevant and reward relevant categories (van der Helm

et al., 2010). Significant deficits in emotional facial recognition

have been previously also reported following a night of sleep

fragmentation, without significant reduction of total sleep time

(Lee et al., 2022). In keeping, it has been suggested that the

disruption of normal sleep process, and not the reduction of sleep

time, may likewise play the role (Lee et al., 2022). Moreover,

there is evidence to suggest that emotional facial recognition

can be sleep-stage dependent, with REM sleep known to play

a critical role on both emotional and neutral face recognition

(Cunningham and Payne, 2017; Lee et al., 2022). Thus, it is likely

that sleep fragmentation and associated sleep loss in our OSA

patients, particularly REM-related fragmentation (Cunningham

and Payne, 2017), may act to impair discrete affective neural

systems, disrupting the identification of salient affective social cues

(van der Helm et al., 2010).

More recently, in a thought provoking set of studies, sleep

loss and sleep’s diminished quality and or quantity, which indeed

present one of the important features of OSA, have also been

linked to diminished altruism (Ben Simon et al., 2022). Specifically,

the authors argued that sleep loss represents one previously

unrecognized factor that may dictate whether humans choose to

help each other, which they based on their observations at three

different scales, within individuals, across individuals, and across

societies (Ben Simon et al., 2022). For instance, in one of the studies,

one night of sleep loss was shown to trigger the withdrawal of

help from one individual to another, with the associated fMRI

findings showing deactivation of key nodes within the social

cognition brain network that facilitate prosociality (Ben Simon

et al., 2022).

Following this argument and our findings, as well as

taking into account that currently around one-seventh of

the world’s adult population, or approximately one billion

Frontiers in Sleep 08 frontiersin.org

https://doi.org/10.3389/frsle.2023.1097946
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Gnoni et al. 10.3389/frsle.2023.1097946

people, are estimated to have OSA (Lyons et al., 2020), the

clinical and societal impact of OSA’s effects on cognition,

even in the absence of any associated co-morbidities,

dictates urgent attention and a joint multidisciplinary

effort. It is increasingly evident that OSA’s functional

neuropsychiatric impact may go well beyond OSA’s currently

best recognized role in increasing driving and occupational

accidents risks (Bucks et al., 2017; Rosenzweig et al.,

2022).

We believe that our pilot study, despite limitations, including

its size, a small control group, multiple comparisons, and a cross-

sectional design, significantly contributes to understanding of the

complex interplay between OSA-severity and cognitive problems.

Critically, our data also reveal a threshold effect in the cognitive

domain of executive functioning. Furthermore, it appears that

cognitive deficits in this age group are greatest in male patients

with severe OSA, likely suggestive of already existent widespread

intricate physiologic central nervous changes, and in further

support of early treatment for this patient group (Rosenzweig et al.,

2015; Gnoni et al., 2021).

Finally, another important limitation to any direct translational

generalization of our findings lies in inclusion of male participants

only. Whilst this enabled controlling for possible effects of the

oestrous cycle, it also prevents us from generalizing to female

patients. Moreover, over the last decade, pioneering new findings

suggest a spectrum of changes in the brain metabolism during the

pre-, peri-, and post-menopausal period (Mosconi et al., 2021),

all of which may arguably interplay with OSA pathomechanisms

(Driver et al., 2005; Saaresranta et al., 2015), as well as underlie

its links with neurodegenerative processes and cognitive deficits

(Polsek et al., 2018) in female patients with OSA.

In conclusion, future multi-center multi-modal longitudinal

studies should confirm these findings, as well as decipher how these

cognitive deficits may interplay in men and women with other

comorbidity-driven impairments over time.
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