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Effect of long-term caloric restriction on DNA 
methylation measures of biological aging in 
healthy adults from the CALERIE trial
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The geroscience hypothesis proposes that therapy to slow or reverse 
molecular changes that occur with aging can delay or prevent multiple 
chronic diseases and extend healthy lifespan1–3. Caloric restriction (CR), 
defined as lessening caloric intake without depriving essential nutrients4, 
results in changes in molecular processes that have been associated with 
aging, including DNA methylation (DNAm)5–7, and is established to increase 
healthy lifespan in multiple species8,9. Here we report the results of a post 
hoc analysis of the influence of CR on DNAm measures of aging in blood 
samples from the Comprehensive Assessment of Long-term Effects of 
Reducing Intake of Energy (CALERIE) trial, a randomized controlled trial 
in which n = 220 adults without obesity were randomized to 25% CR or ad 
libitum control diet for 2 yr (ref. 10). We found that CALERIE intervention 
slowed the pace of aging, as measured by the DunedinPACE DNAm 
algorithm, but did not lead to significant changes in biological age estimates 
measured by various DNAm clocks including PhenoAge and GrimAge. 
Treatment effect sizes were small. Nevertheless, modest slowing of the pace 
of aging can have profound effects on population health11–13. The finding that 
CR modified DunedinPACE in a randomized controlled trial supports the 
geroscience hypothesis, building on evidence from small and uncontrolled 
studies14–16 and contrasting with reports that biological aging may not be 
modifiable17. Ultimately, a conclusive test of the geroscience hypothesis will 
require trials with long-term follow-up to establish effects of intervention 
on primary healthy-aging endpoints, including incidence of chronic disease 
and mortality18–20.

Comprehensive Assessment of Long-term Effects of Reducing Intake of 
Energy (CALERIE) Phase 2 was a multi-center, randomized controlled 
trial conducted at three clinical centers in the United States10. It aimed 

to evaluate the time-course effects of 25% CR (that is, intake 25% below 
the individual’s baseline level) over a 2-yr period in healthy adults (men 
aged 21–50 yr, premenopausal women aged 21–47 yr) with body mass 
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24-month d = 0.05 (95% CI −0.07, 0.17), P > 0.40 for both). CR treat-
ment reduced participants’ DunedinPACE by the 12-month follow-up 
and this reduction was maintained through follow-up at 24 months 
(12-month d = −0.29 (95% CI −0.45, −0.13), 24-month d = −0.25 (95% 
CI −0.41, −0.09), P < 0.003 for both). Standardized treatment effects 
on DunedinPACE correspond to a reduction in the pace of aging of 
2–3%. These average treatment effects summarize diverse responses 
to intervention; for some treatment group participants, reductions 
in DunedinPACE were much larger, whereas, for others, DunedinPACE 
increased from baseline to follow-up. ITT results are reported in Sup-
plementary Table 4.

In the CALERIE Trial, the %CR achieved by participants in the treat-
ment group varied, with most participants achieving doses below the 
prescribed 25% (mean = 11.9, s.e.m. = 0.7%)10. We therefore conducted 
analyses (1) to test if those who achieved higher CR doses experienced 
larger treatment effects (dose–response); and (2) to quantify the treat-
ment effect that would be expected among individuals achieving a 
high dose (we selected a dose of 20%, the 75th percentile of the CR 
distribution in the treatment group at 12 months, hereafter ‘effect-
of-treatment-on-the-treated’ or TOT). To test dose–response, we 
stratified CR treatment group participants according to whether they 
achieved at least 10% CR and repeated ITT analysis. For DunedinPACE, 
the treatment effect in the >10% CR group was d = −0.33 at 12 months 
and d = −0.33 at 24 months, as compared with d = −0.19 at 12 months 
and d = −0.14 at 24 months in the <10% CR group. There was no evidence 
of a dose–response effect for PhenoAge or GrimAge. Full results are 

index (BMI) in the normal weight or slightly overweight range (BMI 
22.0–27.9 kg m−2). Participants were randomly assigned at a ratio of 2:1 
to a CR behavioral intervention or to an ad libitum (AL) control group 
stratified by site, sex and BMI. Of 238 eligible individuals, CALERIE ran-
domized N = 220 participants (145 CR intervention and 75 AL control; 
Fig. 1). Participants in the CR group were prescribed a 25% restriction in 
calorie intake based on energy requirements estimated from two 2-week 
doubly labeled water (DLW) measurement periods at baseline. The 
precise level of CR achieved was quantified by comparing energy intake 
(determined periodically throughout the trial by the DLW method21) 
during the CR intervention with baseline energy intake. The CALERIE 
Trial is described in more detail in Methods.

Blood DNAm data were generated at baseline and at least one 
follow-up timepoint for n = 197 participants (128 CR and 69 AL). Of 
this analysis sample, n = 105 (82%) CR participants and n = 59 (86%) 
AL participants had DNAm data available from all three timepoints 
(baseline, 12 months and 24 months). DNAm analysis is described in 
more detail in Methods. Participants had a mean age of 38 yr (s.d. = 7), 
70% were women and 77% were white; there were no differences in age, 
sex or race/ethnicity between AL and CR at baseline (Table 1).

The goal of our analysis was to test the effect of CALERIE interven-
tion on biological aging. We measured biological aging from blood 
DNAm using published algorithms. These algorithms aim to capture 
the accumulation of molecular changes that underlie the progressive 
loss of system integrity that occurs with advancing chronological age. 
Primary analysis focused on the PhenoAge22 and GrimAge23 second-
generation DNAm clocks and the DunedinPACE24 measure of pace of 
aging, all of which show strong associations with aging-related morbid-
ity and mortality. We analyzed versions of the PhenoAge and GrimAge 
clocks constructed from DNAm principal components (PCs) (hereafter 
‘PC clocks’), which have superior technical reliability as compared with 
the original versions of these measures25; DunedinPACE was originally 
designed to have high technical reliability. Measures are described 
in detail in Table 2 and Methods. Associations of DNAm measures of 
aging with chronological age at preintervention baseline are shown 
in Supplementary Fig. 2. Mean values of the DNAm measures of aging 
in the CR and AL groups at baseline and each follow-up are reported 
in Supplementary Table 1. Intraclass correlation coefficients for tests 
of technical reliability and within-individual stability are reported in 
Supplementary Table 2.

We computed change scores for the DNAm measures of aging 
as the differences of 12-month and 24-month follow-up values from 
baseline values. For analysis, change scores were scaled so that effect 
sizes can be interpreted as standardized differences between means 
(Cohen’s d). For PhenoAge and GrimAge clocks, change score values 
were scaled by the standard deviation of the difference between clock 
age and chronological age at pretreatment baseline. For DunedinPACE, 
which measures pace of aging (that is, change in biological age per 
chronological year), change score values were scaled by the standard 
deviation at pretreatment baseline. Scaled change scores are reported 
in Supplementary Table 3. Change scores are graphed in Fig. 2 and 
Supplementary Fig. 3.

To test the hypothesis that CR slowed biological aging, we con-
ducted intent-to-treat (ITT) analysis which compared change scores 
between participants randomized to CR intervention and AL control 
group using repeated-measures analysis of covariance (ANCOVA) 
implemented under mixed models, following the approach used in 
past CALERIE analysis26. Model details are reported in Methods. We 
use P < 0.005 as a conservative threshold for statistical significance fol-
lowing guidance from leaders in the field27. As expected, participants’ 
PhenoAge and GrimAge values tended to increase over time. However, 
change in PhenoAge and GrimAge values did not differ between CR 
and AL groups (for PhenoAge, 12-month d = −0.03 (95% confidence 
interval (95% CI) −0.19, 0.12), 24-month d = 0.05 (95% CI −0.11, 0.20), 
P > 0.50 for both; for GrimAge, 12-month d = −0.04 (95% CI −0.16, 0.07), 

Enrollment 

238 eligible 

Allocation 

Randomized 
(n = 220)

18 dropped during baseline
• Withdrew consent, n = 5
• Found ineligible, n = 10
• Other, n = 3

25% CR (n = 145)
Started intervention (n = 143)
• Withdrew consent (n = 1)
• Work-related issues (n = 1)

AL (n = 75)
Started intervention (n = 75)

CR participants 
143 (98%)

128 in DNAm analysis sample

AL participants 
75 (98%)

69 in DNAm analysis sample

117 completed intervention
(117 in DNAm analysis sample)
26 stopped intervention
• 3 women became pregnant
• 6 moved away from study site
• 3 withdrawn for safety
• 8 withdrew consent
• 6 personal and other reasons

71 completed intervention
(68 in DNAm analysis sample)
4 stopped intervention
• 3 women became pregnant
• 1 withdrew consent

Fig. 1 | Consort diagram for the CALERIE Trial. DNAm was assayed from 
blood samples collected at baseline, 12 months and 24 months. Of the n = 197 
participants for whom DNAm data were available from baseline and at least one 
follow-up assessment, baseline to 12-month change was measured for n = 125 CR 
and n = 66 AL participants and baseline to 24-month change was measured for 
n = 117 CR and n = 68 AL participants.

http://www.nature.com/nataging


Nature Aging

Letter https://doi.org/10.1038/s43587-022-00357-y

reported in Supplementary Table 5. To test the TOT, we conducted 
instrumental variables (IV) analysis. IV analysis assumes that CALERIE 
intervention affected participants’ biological aging only through its 
effect on their caloric intake. Our IV analysis estimated the % reduction 
in caloric intake each participant achieved because of the intervention 
and applied these estimates to quantify the effect of %CR on biological 
aging. In IV analysis, the effect of 20% CR on DunedinPACE was d = −0.43 
(95% CI −0.67, −0.19) at 12 months and d = −0.40 (95% CI −0.67, −0.12) 
at 24 months (P < 0.005 for both). IV effect-size estimates for Pheno-
Age and GrimAge were small (d = −0.13–0.01; P > 0.15). TOT results are 
reported in Supplementary Table 4.

We tested sensitivity of results to changes in white blood cell popu-
lations in response to CALERIE intervention by including covariates 
in our models for DNAm estimates of cell counts28; these results were 
similar to unadjusted analyses (Supplementary Table 6).

We tested sex differences in treatment effects. We repeated ITT 
and TOT analyses with the addition of a product term testing interac-
tion between the treatment variable and participant sex. Sex differ-
ences in treatment effects were not statistically different from zero 
in any of the models. Means of DNAm measures of aging are reported 
separately for men and women in Supplementary Tables 7 and 8. Sex-
stratified treatment effects and tests of sex differences in treatment 
effects are reported in Supplementary Tables 9 and 10.

Previous studies have considered a broader set of DNAm measures 
of aging. In the interest of comparability across studies, we report 
results for so-called ‘first-generation’ clocks developed to predict 
chronological age and the original versions of the PhenoAge and Grim-
Age clocks in the Supplementary Information.

CR effects varied across the DNAm measures of aging we analyzed. 
CALERIE intervention slowed pace of aging as measured by Dunedin-
PACE, whereas the CR intervention did not affect the PhenoAge and 
GrimAge DNAm clocks. All three measures have evidence for validity 
as biomarkers of aging, in particular, evidence of association with 
aging-related morbidity and mortality and with exposures associated 
with shortened healthy lifespan24,29,30. However, these DNAm measures 
were developed using different methods and reflect different models 
of aging. The PhenoAge and GrimAge clocks were developed to predict 
mortality risk at a single timepoint in mixed-age and older adults. This 
approach quantifies aging as a static construct of risk accumulated 
across the lifetime. In contrast, DunedinPACE was developed to predict 
multi-system physiological decline over two decades of follow-up from 
early adulthood to midlife. This approach quantifies aging as a dynamic 
construct reflecting change in risk accumulation. DunedinPACE may 

Table 1 | Characteristics of CALERIE Trial participants at 
baseline

AL CR

N/mean (%/s.d.) N/mean (%/s.d.)

CALERIE participant characteristics at baseline

Age at baseline (yr) 38 (7) 38 (7)

Energy intake (kcal d−1) 2,045 (481) 2,124 (558)

Sex

 Women 53 (71%) 100 (69%)

 Men 22 (29%) 45 (31%)

Race/ethnic identity

 White 57 (76%) 111 (77%)

 Black 11 (15%) 16 (11%)

 Other 7 (9%) 18 (12%)

Study site

 A 25 (33%) 47 (32%)

 B 27 (36%) 53 (37%)

 C 23 (31%) 45 (31%)

BMI stratum

 22.0–24.9 kg m−2 37 (54%) 70 (48%)

 25.0–27.9 kg m−2 38 (55%) 75 (52%)

Analysis sample characteristics at baseline

Age at baseline 38 (7) 38 (7)

Energy intake (kcal d−1) 2,023 (469) 2,130 (540)

Sex

 Women 48.00 (70%) 89 (70%)

 Men 21.00 (30%) 39 (30%)

Race/ethnic identity

 White 52.00 (75%) 100 (78%)

 Black 10 (14%) 13 (10%)

 Other 7 (10%) 15 (12%)

Study site

 A 24 (35%) 42 (33%)

 B 25 (36%) 45 (35%)

 C 20 (29%) 41 (32%)

BMI stratum

 22.0–24.9 kg m−2 33 (48%) 60 (47%)

 25.0–27.9 kg m−2 36 (52%) 68 (53%)

The table shows data for participants randomized to the AL control group and the CR 
treatment group. CALERIE included a total of N = 220 participants (AL n = 75, of whom n = 71 
completed the study; CR n = 145, of whom n = 118 completed the study). The analysis sample 
was composed of CALERIE participants for whom DNAm data were available at baseline and 
at least one follow-up assessment (‘analysis sample’; N = 197; AL n = 69, CR n = 128).

Table 2 | DNAm clock and pace-of-aging measures included 
in CALERIE analysis

DNAm clocks. DNAm clock measures of aging are algorithms that estimate 
biological age, the state of an organism’s biology represented as the age at 
which that state would be typical in a reference population. The clocks we 
analyzed were developed to predict mortality risk. The age values computed 
by the clock algorithms correspond to the age at which predicted mortality 
risk would be approximately normal in the reference population used to 
develop the clock. We computed clock values based on versions of the 
clock algorithms developed from DNAm PCs (sometimes referred to as ‘PC 
clocks’)18,21.

PhenoAge clock Based on analysis of nine blood chemistry markers, 
age and mortality data from the US National Health and 
Nutrition Examination Surveys (n = 9,926 participants 
aged 18 yr and older; 23 yr of mortality follow-up); DNAm 
and blood chemistry data from the InCHIANTI Study 
(n = 912 participants aged 21–100 yr); and the US Health 
and Retirement Study (n = 3,593 participants aged 
51–100 yr)19.

GrimAge clock Based on analysis of eight plasma protein markers, 
smoking pack years, age, sex and mortality data from 
the Framingham Heart Study Offspring Cohort (n = 2,356 
participants aged 24–92 yr)47–49.

Pace of aging. Pace-of-aging measures estimate the rate of biological aging, 
defined as the rate of decline in overall system integrity. Pace-of-aging values 
correspond to the years of biological aging experienced during a single 
calendar year. A value of 1 represents the typical pace of aging in a reference 
population; values above 1 indicate faster pace of aging; values below 1 
indicate slower pace of aging.

DunedinPACE Based on analysis of pace of aging in the Dunedin Study 
(n = 817 participants examined at ages 26, 32, 38 and 
45 yr)24. Pace of aging was measured from within-person 
change over time in 19 blood chemistry and organ 
function test metrics of system integrity24. DNAm was 
measured at age 45 yr.
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therefore be more sensitive than PhenoAge and GrimAge to changes 
induced by 2 yr of CALERIE intervention.

Our previous reports on CALERIE establish that CR intervention 
improved participants’ cardiometabolic health and slowed aging-
related changes in physiological system integrity26,31,32. In some cases, 
these effects are larger than the effects we observed for Dunedin-
PACE (for example, d = 0.2–0.3 for DunedinPACE as compared with 
d = 0.2–0.4 for blood chemistry measures of biological age32). Changes 
in DunedinPACE in response to CR intervention mediated only small 
fractions of CR-induced changes in clinical measures (Supplementary 

Fig. 4). The purpose of DNAm analysis in CALERIE was to evaluate 
intervention effects at the molecular level, where aging processes are 
posited to originate33. Studies in subsets of CALERIE participants sug-
gest effects of CR on molecular mechanisms of immune and metabolic 
regulation34,35. DunedinPACE findings broaden evidence of molecular 
changes in response to CR to a DNAm biomarker of aging established 
to predict morbidity and mortality.

Follow-up in the CALERIE Trial did not extend beyond the interven-
tion. It is therefore unclear if the changes in DunedinPACE observed 
during the 2-yr intervention will translate into reduced morbidity and 
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Fig. 2 | Change from baseline to 12- and 24-month follow-up in DNAm 
measures of aging in the AL and CR groups in the CALERIE Trial. The figure 
shows CALERIE Trial treatment effects on three DNAm measures of aging, the 
PC PhenoAge clock, the PC GrimAge clock and DunedinPACE. Values for the 
AL control group (n = 69 participants) are graphed in blue. Values for the CR 
treatment group (n = 128 participants) are graphed in red. For the PhenoAge and 
GrimAge DNAm clocks, values are denominated in ‘years’ of DNAm age. For the 
clocks, expected change under the null hypothesis is 1 yr at 12-month follow-
up and 2 yr at 24-month follow-up. For the DunedinPACE measure, values are 
denominated in pace-of-aging units scaled to be interpretable as percentage 
difference in the rate of aging relative to the reference norm of 1 yr of biological 
decline per calendar year. For DunedinPACE, expected change under the null 
hypothesis is zero. The left column of the figure shows box plots of the observed 
values of the measures at baseline and 12- and 24-month follow-ups. The boxes 

show the interquartile range; the whiskers show 1.5× the interquartile range; 
the center line shows the median; individual participant data are plotted as dots 
and connected with lines. For the PC PhenoAge and PC GrimAge DNAm clocks, 
the box plots show similar patterns of increase in both AL and CR groups. For 
DunedinPACE, the box plot shows stability in the AL group and decrease in the CR 
group. The right column of the figure shows mean values of change from baseline 
and 95% CIs estimated from mixed models at the 12- and 24-month follow-ups 
for the AL and CR groups. There is no confidence interval estimated for baseline 
because change from baseline is exactly zero at this timepoint. For the PC 
PhenoAge and PC GrimAge DNAm clocks, mean change is similar in the AL and 
CR groups. For DunedinPACE, mean change is positive in the AL group (although 
the confidence interval overlaps zero at 24 months) and negative in the CR group. 
mo, months.
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mortality over the long term. In observational studies with long-term 
follow-up, individuals with slower DunedinPACE are better-off on a range 
of healthspan metrics, including showing reduced incidence of morbid-
ity and increased survival24,29. These previous studies suggest that the 
CALERIE treatment effect of 2–3% slower pace of aging corresponds to 
a reduction in mortality risk of as much as 10–15%, similar in magnitude 
to the effect of smoking cessation intervention36. Additional follow-up 
of trial participants is required to determine whether CR-induced reduc-
tions to DunedinPACE in CALERIE will translate into disease prevention 
and increased healthy lifespan. Moreover, changes in DunedinPACE 
over follow-up showed substantial overlap between the CR treatment 
group and the AL control group; effect-size estimates imply close to 90% 
overlap of DunedinPACE trajectories between the two groups.

We acknowledge limitations. There is no gold standard measure of 
biological aging37. We analyzed several measures which represent the 
current state-of-the-art in DNAm quantification of biological aging38. 
Nevertheless, these measures are acknowledged to be incomplete sum-
maries of biological changes that occur with aging and to have technical 
limitations39,40. Treatment effects on aspects of biological aging not 
captured by the DNAm measures are not included in effect estimates; 
measurement error due to technical limitations of DNAm assays may 
bias effect estimates towards the null. Treatment effect estimates 
may therefore represent a lower-bound of the true impact of CALERIE 
intervention on biological aging. The measures we studied summarize 
biological aging in general and do not isolate system-specific aging 
processes41. However, CR has diverse effects across multiple biological 
systems42,43. Our general measures of biological aging thus provide a 
reasonable test of cross-system impacts. On average, trial partici-
pants did not achieve the prescribed dose of 25% CR and some control 
group participants reduced their caloric intake. Despite this imperfect 
adherence, treatment group participants experienced substantial and 
sustained weight loss and related changes in body and tissue composi-
tion, broad improvement in cardiometabolic health and a slowing of 
aging-related physiological changes26,31,44,45. Our dose–response and 
TOT analyses indicated that participants who achieved higher doses 
of CR experienced more pronounced reductions in DunedinPACE. 
The CALERIE Trial sample does not represent the general population 
and treatment effects may not generalize beyond the population of 
healthy volunteers recruited to participate. CALERIE follow-up is, so 
far, limited to the end of the intervention period. Whether treatment 
and any slowing in biological aging that resulted from it translated to 
long-term clinical benefit is currently unknown.

Within the context of these limitations, our findings have implica-
tions for future geroscience research. Aging biology research has iden-
tified multiple therapies with potential to improve healthy lifespan in 
humans. A barrier to advancing translation of these therapies through 
human trials is that intervention studies run for months or years, but 
human aging takes decades to cause disease46–48. New measurements 
that summarize biological changes occurring with aging have poten-
tial to overcome this challenge; measurements to quantify biological 
aging that both predict future disease, disability and mortality and 
can detect changes in aging processes over short timescales have 
potential to function as surrogate endpoints for intervention effects 
on healthy lifespan38,49. The methods proposed to quantify biological 
aging analyzed in this study are predictive of aging-related health 
decline and mortality. However, until this study, none had been tested 
in a randomized controlled trial of a geroscience-based intervention49. 
Our findings highlight DunedinPACE as a measure with potential util-
ity in future trials. DunedinPACE has high test–retest reliability and 
shows strong associations with healthspan endpoints in validation 
analyses24,29. Ultimately, establishing DunedinPACE and other DNAm 
measures of aging as surrogate endpoints for geroscience will require 
evidence that changes in DNAm measures account for intervention 
effects on primary healthy-aging endpoints, including incidence of 
chronic disease and mortality18–20. The evidence reported from CALERIE 

suggests that DunedinPACE may be helpful in identifying short-term 
interventions worthy of long-term follow-up to generate such evidence.

CALERIE was a 24-month, intensive behavioral intervention to 
deliver a therapy proven to slow aging in animal models. Although 
treatment effect sizes were small, even modest slowing of the pace of 
aging can have profound effects on population health11–13. Future trials, 
especially those considering less-intensive or shorter-term interven-
tions, such as intermittent fasting50, should plan for larger samples to 
ensure adequate statistical power. Further, efforts to forecast potential 
benefits from interventions designed to delay aging may best serve 
policy makers and planners if they work from assumptions of modest 
intervention effects.

Methods
We conducted new DNAm assays of stored blood biospecimens col-
lected from the CALERIE Phase 2 randomized controlled trial and 
merged these data with existing secondary data from the trial. The 
assays of the biospecimens were conducted blind to the conditions 
of the trial. Details of trial design and the collection of other trial data 
were reported previously10,26.

Study design and participants
CALERIE Phase 2 was a multi-center, randomized controlled trial con-
ducted at three clinical centers in the United States10 (ClinicalTrials.gov 
Identifier: NCT00427193). It aimed to evaluate the time-course effects 
of 25% CR (that is, intake 25% below the individual’s baseline level) over 
a 2-yr period in healthy adults (men aged 21–50 yr, premenopausal 
women aged 21–47 yr) with BMI in the normal weight or slightly over-
weight range (BMI 22.0–27.9 kg m−2). The study protocol was approved 
by Institutional Review Boards at three clinical centers (Washington 
University School of Medicine, St Louis, MO, USA; Pennington Biomedi-
cal Research Center, Baton Rouge, LA, USA; Tufts University, Boston, 
MA, USA) and the coordinating center at Duke University (Durham, 
NC, USA). All study participants provided written, informed consent. 
Nongenomic data were obtained from the CALERIE Biorepository 
(https://calerie.duke.edu/apply-samples-and-data-analysis).

Randomization and masking
After baseline testing, participants were randomly assigned at a ratio 
of 2:1 to a CR behavioral intervention or to an AL control group. Rand-
omization was stratified by site, sex and BMI. A permuted block rand-
omization technique was used.

Procedures
Study procedures were published previously10,21,26 and are described 
here in brief. Participants in the CR group were prescribed a 25% restric-
tion in calorie intake based on energy requirements estimated from 
two DLW measurement periods at baseline. Participants were provided 
three meals per day for 27 d to familiarize themselves with portion sizes 
for a 25% reduced calorie intake; meals included eating plans modified 
to suit various cultural preferences. Participants also received instruc-
tion on the essentials of CR. Finally, participants were provided with 
intensive group and individual behavioral counseling sessions once 
a week, with 24 group and individual counseling sessions over the 
first 24 weeks of the intervention. Adherence to the CR intervention 
was estimated in real time by the degree to which individual weight 
change followed a predicted weight loss trajectory (15.5% weight loss 
at 1 yr followed by weight loss maintenance). The precise level of CR 
achieved was quantified retrospectively by calculating energy intake 
during the CR intervention and comparing it with baseline energy 
intake. Energy intake during the 2-yr trial was quantified from total 
daily energy expenditure (assessed during 2-week DLW periods every 
6 months) and changes in body composition (that is, fat mass and 
fat-free mass). Participants assigned to the AL group continued on 
their regular diets; they received no specific dietary intervention or 
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counseling. They had quarterly contact with study investigators to 
complete the assessments.

Quantification of %CR
Mean %CR was calculated at each of the follow-up timepoints as per-
centage decrease in energy intake relative to baseline using the equa-
tion %CRmean = (1 − EImean/EIBL) × 100 (ref. 21). EIBL was defined as total 
energy expenditure (TEE) at preintervention baseline and EImean was 
defined as the average of TEE across all follow-up visits through the visit 
at which %CR was calculated. TEE was measured by the DLW method 
during two consecutive 2-week periods at baseline and during 2-week 
periods at months 6, 12, 18 and 24 in the CR group10,44.

DNAm data
DNA extracted from blood samples was obtained from the CALERIE 
Biorepository at the University of Vermont. DNAm data were generated 
by the Kobor Lab at the University of British Columbia and processed 
by the Genomic Analysis and Bioinformatics Shared Resource at Duke 
University. Illumina Infinium Methylation EPIC BeadChip arrays were 
used to assay genome-wide DNAm data from banked DNA samples 
extracted from blood collected at the baseline, 12-month and 24-month 
follow-ups. The EPIC array quantifies DNAm levels at >850,000 CpG 
sites across all known genes, regions and key regulatory regions. Briefly, 
750-ng extracted DNA samples were bisulfite converted using the EZ 
DNA Methylation kit (Zymo Research), and 160 ng of the converted DNA 
was used as input for the EPIC arrays (Illumina). EPIC arrays were pro-
cessed according to the manufacturer’s instructions and scanned using 
the Illumina iScan platform. To the extent possible, baseline, 12-month 
and 24-month samples from the same individual were processed in 
the same array batch and on the same BeadChip to minimize batch 
effects; CR treatment and AL control participants were included on 
all chips. Quality control and normalization analyses were performed 
using the methylumi (v.2.32.0)51 Bioconductor (v.2.46.0)52 package 
for the R statistical programming environment (v.3.6.3). Probes were 
considered missing in a sample if they had detection P values >0.05 and 
were excluded from the analysis if they were missing in >5% of sample. 
Normalization to eliminate systematic dye bias in 2-channel probes 
was carried out using the methylumi default method. Following quality 
control and normalization, DNAm data for 828,613 CpGs were available 
for n = 595 samples (baseline n = 214; 12 months n = 193; 24 months 
n = 188). Additional batch correction was performed by residualizing 
DNAm measurements for PCs estimated from array control-probe 
beta values53. Cell count estimation was performed using the House-
man equation via the minfi and FlowSorted.Blood.EPIC R packages28,54.

DNAm clocks and pace-of-aging measures
DNAm clocks are algorithms that combine information from DNAm 
measurements across the genome to quantify variation in biological 
age55.

The first-generation DNAm clocks were developed from machine-
learning analyses comparing samples from individuals of different 
chronological age. These clocks were highly accurate in predicting 
the chronological age of new samples and also showed some capacity 
for predicting differences in mortality risk, although effect sizes tend 
to be small and inconsistent across studies56–58. We analyzed the first-
generation clocks proposed by Horvath (Horvath clock) and Hannum 
et al. (Hannum clock)56,57.

The second-generation DNAm clocks were developed with the 
goal of improving quantification of biological aging by focusing on 
differences in mortality risk instead of on differences in chronological 
age22,23. These clocks also include an intermediate step in which DNAm 
data are fitted to physiological parameters. The second-generation 
clocks are more predictive of morbidity and mortality as compared with 
the first-generation clocks59 and are proposed to have improved poten-
tial for testing impacts of interventions to slow aging14. We analyzed the 

second-generation clocks proposed by Levine et al. (PhenoAge clock) 
and Lu et al. (GrimAge clock)22,23.

A limitation of several DNAm clocks is that when residualized 
for chronological age, values show only moderate test–retest reli-
ability across technical replicates. Test–retest reliability is a critical 
feature of measurements used to evaluate the impact of intervention 
because change from preintervention to postintervention cannot be 
distinguished from technical noise unless reliability is high. To improve 
technical reliability, Higgins-Chen and colleagues developed a new 
computational method that retrained DNAm clocks using DNAm PCs25. 
The resulting ‘PC clocks’ demonstrate exceptional test–retest reliability 
across technical replicates.

A third generation of DNAm measures of aging are referred to as 
pace-of-aging measures. In contrast to first- and second-generation 
DNAm clocks, which aim to quantify how much aging has occurred up 
to the time of measurement, pace-of-aging measures aim to quantity 
how fast the process of aging-related deterioration of system integrity 
is proceeding. We analyzed the newest pace-of-aging measure, Duned-
inPACE, which is shorthand for ‘Pace of Aging Computed from the Epig-
enome’24. DunedinPACE was developed by modeling within-individual 
multi-system physiological change across four timepoints in same-age 
individuals in the Dunedin Study 1972–1973 birth cohort60,61, when par-
ticipants were aged 26, 32, 38 and 45 yr. DunedinPACE was developed 
from analysis of a pace-of-aging composite of slopes of aging-related 
change in the following physiological measures: ApoB100/ApoA1 
ratio, BMI, blood urea nitrogen, high-sensitivity C-reactive protein, 
cardiorespiratory fitness, dental caries experience, total cholesterol, 
forced expiratory volume in 1 second, forced expiratory volume in 
1 second/fixed vital capacity ratio, estimated glomerular filtration 
rate, hemoglobin A1C, high-density lipoprotein cholesterol, leptin, 
lipoprotein(a), mean arterial pressure, mean periodontal attachment 
loss, triglycerides, waist-to-hip ratio and white blood cell count. Slopes 
of change were estimated from four repeated measurements collected 
over a period of two decades. This physiological pace-of-aging compos-
ite is described in detail in ref. 61. The DunedinPACE DNAm algorithm 
was derived from elastic net regression of the physiological pace-of-
aging composite on Illumina EPIC array DNAm data derived from blood 
samples collected at the age 45 follow-up assessment. The set of CpG 
sites included in the DNAm dataset used to develop the DunedinPACE 
algorithm was restricted to those showing acceptable test–retest reli-
ability as determined in the analysis in ref. 62. The DunedinPACE DNAm 
algorithm is described in detail in ref. 24.

Our primary analysis focused on the PC versions of the Pheno-
Age and GrimAge second-generation clocks and DunedinPACE, all of 
which show exceptional test–retest reliability in technical replicates. 
We report results for both original and PC versions of DNAm clocks in 
the Supplementary Information.

Analysis
Analysis included all participants with available DNAm data at trial 
baseline and at least one follow-up timepoint.

We computed change scores for all aging measures by compar-
ing values at the 12-month and 24-month follow-up assessments with 
baseline values (that is, 12-month change = 12-month value − baseline; 
24-month change = 24-month value − baseline). We conducted analyses 
of these change scores to test the hypothesis that CR slows biological 
aging using two complementary approaches: (1) we conducted ITT anal-
ysis which compared change scores between participants randomized 
to CR intervention and the AL control group; (2) we conducted TOT 
analysis using IV methods to estimate the effect of CR on change scores.

In ITT analysis, we tested the effect of randomization to CR versus 
AL on aging measure change scores using repeated-measures ANCOVA 
implemented under mixed models, following the approach used in past 
CALERIE analysis26. The model included terms for treatment condition (CR 
or AL), follow-up time, an interaction term modeling heterogeneity in the 
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treatment effect between the 12- and 24-month follow-ups, the baseline 
level of the aging measure and the following pretreatment covariates: 
chronological age, sex, race/ethnicity (Black, White, Other), BMI stratum 
at randomization (normal weight (22.0–24.9 kg m−2) and overweight 
(25.0–27.9 kg m−2)) and study site. Models were fitted using the Stata 
software’s ‘mixed’ command. Details of estimation and calculation of con-
fidence intervals are reported in Stata’s documentation of the command63.

In TOT analysis, we tested the effect of the CR intervention on 
aging measure change scores using IV regression implemented using 
a two-stage least squares approach64. The first-stage regression mod-
eled CR treatment dose as a function of randomization condition (CR 
versus AL) and pretreatment characteristics (chronological age, sex, 
race/ethnicity, BMI, study site and baseline value of the biological aging 
measure). The model instruments were randomization condition and 
interactions of randomization condition with sex and pretreatment 
values of BMI and the biological aging measure. The second-stage 
regression modeled aging measure change scores as a function of 
the CR treatment dose estimated from the first-stage regression and 
pretreatment covariates. Separate models were fitted for the 12- and 
24-month follow-ups. IV regression models were fitted using the Stata 
16.0 software’s ‘ivregress’ command. Details of estimation and calcula-
tion of confidence intervals are reported in Stata’s documentation of 
the command65. TOT models are described in detail below.

In ITT and TOT analyses, effect sizes were scaled in standardized 
units according to the distribution of the aging measures at pretreat-
ment baseline. For the DNAm clocks, clock ages were differenced from 
chronological ages and standard deviations for these age-difference 
values were used for scaling. For DunedinPACE, the standard devia-
tions of the original values were used for scaling. Treatment effects 
denominated in these standardized units are interpreted as Cohen’s d.

Specification of TOT regression models
We tested TOT effects using two-stage least squares IV regression. 
IV regression is a method commonly used to reduce the impact of 
confounding in association analysis. It can also be applied to account 
for contamination/nonadherence in randomized trials64. Under condi-
tions of nonadherence, traditional ITT analysis can result in a biased 
estimate of the treatment effect and an IV estimator can provide a 
complement66. In CALERIE, adherence was imperfect; the average CR 
achieved in the treatment group was roughly half the prescribed dose 
of 25% (ref. 10). The ITT estimate may therefore underestimate the effect 
of CR on biological aging.

In our analysis, we used IV regression to estimate the effect of 
20% CR on change in measures of biological aging. We focused on a CR 
dose of 20% instead of the 25% dose prescribed in the trial because few 
individuals achieved 25% CR, especially through the 24-month follow-
up. The 20% CR level represented the 75th percentile of the treatment 
group CR distribution at 12-month follow-up and the 87th percentile 
of the treatment group CR distribution at 24-month follow-up.

The IV approach we used involved two related regressions. The first 
regression modeled observed treatment dose (%CR relative to baseline) 
on pretreatment characteristics and the instrument of randomization 
condition. The second regression modeled the outcomes (changes in 
measures of biological aging) as functions of the predicted treatment 
dose estimated by the first regression and pretreatment covariates.

We developed our IV regression model by first modeling interven-
tion group participants’ achieved CR treatment dose as a function of 
pretreatment covariates: chronological age, sex, BMI, study site. We 
fitted a saturated regression model including interactions among all 
pretreatment characteristics and additional covariate adjustment for 
race/ethnicity, which was included only as a main effect. (Race/ethnicity 
was omitted from the interaction terms because there was insufficient 
site- and sex-specific variation in race/ethnicity to fit models.) This 
analysis identified sex, baseline BMI and their interaction as statistically 
significant predictors of CR dose at the alpha = 0.05 level.

Next, we parameterized our IV regression specifying the first stage 
to include the ‘instruments’ of intervention group and interactions of 
intervention group with sex, pretreatment BMI and a three-way interac-
tion between intervention condition, sex and pretreatment BMI. The 
base first-stage regression took the form

%CRt = a + CR + CR × sex + CR × BMIbaseline
+CR × sex × BMIbaseline + X + e

(1)

in which %CRt is the %CR relative to baseline achieved at time t (either 
12- or 24-month follow-up), BMIbaseline is pretreatment BMI, X is a matrix 
of all pretreatment covariates, a is a model intercept and e is the error 
term. Results from this first-stage regression were then included in the 
second-stage model:

Delta BAt = a + %CRt + X + e (2)

in which %CRt is %CR predicted from equation (1). For final TOT analysis, 
we included a further instrument in the first-stage regression consisting 
of the interaction between the baseline level of the aging measure and 
the CR treatment group. Sensitivity analysis involving re-estimating 
the IV regression models omitting this final instrument did not change 
results.

Supplementary Fig. 1 plots predicted values of %CR based on our 
base first-stage model (that is, the model in equation (1)).

Statistics and reproducibility
We conducted new DNAm assays of stored blood biospecimens col-
lected from the CALERIE Phase 2 randomized controlled trial and 
merged these data with existing secondary data from the trial. The 
assays of the biospecimens were conducted blind to the conditions 
of the trial. After baseline testing, n = 220 participants were randomly 
assigned at a ratio of 2:1 to a CR behavioral intervention or to an AL 
control group. Randomization was stratified by site, sex and BMI. A 
permuted block randomization technique was used. No statistical 
methods were used to predetermine sample sizes; we analyzed data 
from all participants for whom blood DNAm data were available at base-
line and at least one follow-up timepoint (N = 197; CR n = 128, AL n = 69). 
Participants had mean age of 38 yr (s.d. = 7), 70% were women and 
77% were white; there were no differences in age, sex or race/ethnicity 
between AL and CR at baseline (Table 1). Data met model assumptions. 
Normality of outcome variables was evaluated by visual inspection of 
distributions and the Shapiro–Wilk test67. Equality of variances was 
evaluated according to the tests proposed by Brown and Forsythe68 and 
Markowski and Markowski69. Models used to test ITT and TOT effects 
were fitted with heteroskedasticity-robust standard errors. Normality 
of distribution of error terms was evaluated by visual inspection of 
histograms of residuals and the Shapiro–Wilk test.

DNAm clocks
DNAm clock measures of aging are algorithms that estimate biologi-
cal age, the state of an organism’s biology represented as the age at 
which that state would be typical in a reference population. The clocks 
we analyzed were developed to predict mortality risk. The age values 
computed by the clock algorithms correspond to the age at which 
predicted mortality risk would be approximately normal in the refer-
ence population used to develop the clock. We computed clock values 
based on versions of the clock algorithms developed from DNAm PCs 
(sometimes referred to as ‘PC clocks’)18,21.

PhenoAge clock. The PhenoAge clock was based on analysis of nine 
blood chemistry markers, age and mortality data from the US National 
Health and Nutrition Examination Surveys (n = 9,926 participants aged 
18 yr and older; 23 yr of mortality follow-up); DNAm and blood chem-
istry data from the Invecchiare in Chianti (InCHIANTI) Study (n = 912 
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participants aged 21–100 yr); and the US Health and Retirement Study 
(n = 3,593 participants aged 51–100 yr)19.

GrimAge clock. The GrimAge clock was based on analysis of eight 
plasma protein markers, smoking pack years, age, sex and mortality 
data from the Framingham Heart Study Offspring and Gen3 Cohorts 
(n = 2,751 participants aged 24–92 yr)47–49.

Pace of aging
Pace-of-aging measures estimate the rate of biological aging, defined 
as the rate of decline in overall system integrity. Pace-of-aging values 
correspond to the years of biological aging experienced during a single 
calendar year. A value of 1 represents the typical pace of aging in a refer-
ence population; values above 1 indicate faster pace of aging; values 
below 1 indicate slower pace of aging.

DunedinPACE. Based on analysis of pace of aging in the Dunedin Study 
(n = 817 participants examined at ages 26, 32, 38 and 45 yr)24, pace of 
aging was measured from within-person change over time in 19 blood 
chemistry and organ function test metrics of system integrity24. DNAm 
was measured at age 45 yr.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data, including DNA methylation data, are available for academic 
research purposes from the CALERIE Biorepository: https://calerie.
duke.edu. Instructions for applying for data access are detailed at 
https://calerie.duke.edu/samples-data-access-and-analysis. Applica-
tions for some types of data may require IRB oversight. Guidelines 
are available at https://calerie.duke.edu/sites/default/files/2022-08/
calerie_ancillary_study_guidelines_revised_042921.pdf. Registration 
to obtain an application form can be completed at https://calerie.
duke.edu/database-submission-form. Phenotypic data used in the 
primary analysis were obtained from the analysis datasets ‘subject1’, 
‘visits’, ‘ivrsrand’, ‘clwtvis’ and ‘pctcr’. Additional data were obtained 
from ‘teerq’, ‘rmrresid’, ‘vitalsa’, ‘oclabflt’. Source data for Fig. 2 and 
Supplementary Fig. 3 are provided in Supplementary Information.

Code availability
Code is available from GitHub: https://github.com/danbelsky/
CALERIE_ClocksAnalysis.
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