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SUMMARY
Life’s events are scattered throughout time, yet we often recall different events in the context of an integrated
narrative. Prior research suggests that the hippocampus, which supports memory for past events, can sup-
port the integration of overlapping associations or separate events in memory. However, the conditions that
lead to hippocampus-dependent memory integration are unclear. We used functional brain imaging to test
whether the opportunity to form a larger narrative (narrative coherence) drives hippocampal memory integra-
tion. During encoding of fictional stories, patterns of hippocampal activity, including activity at boundaries
between events, were more similar between distant events that formed one coherent narrative, compared
with overlapping events taken from unrelated narratives. One day later, the hippocampus preferentially sup-
ported detailed recall of coherent narrative events, through reinstatement of hippocampal activity patterns
from encoding. These findings demonstrate a key function of the hippocampus: the integration of events
into a narrative structure for memory.
INTRODUCTION

It is well established that although experience unfolds over a

continuous timeline, memory for one’s experience, or episodic

memory,1 can be segmented into individual units of time called

‘‘events.’’2–8 However, there is reason to think that real-life mem-

ory might be organized at a level above and beyond events. For

example, in one event, you might encounter your neighbor Mel-

vin, who tells you that he is locked out of his house while a pizza

is baking in the oven. The next day, Melvin might call and tell you

that his kitchen is covered in ash. Although Melvin appears in

temporally separated events, they coalesce to form a narrative:

a larger unit of information that encompasses multiple events,

and in which one’s understanding of each event is dependent

on information from other events.9–14

Organizing events into a narrative can be beneficial for mem-

ory.12,15–18 We recently demonstrated that, when temporally

separated events could be assimilated into a larger narrative,

they were recalled in greater detail than events involving an over-

lapping character in different narratives.10 Furthermore, narra-

tives are more than the semantic information conveyed in words

and sentences alone.11–13,16 Although some models have sug-

gested that semantic associations can bind words or sentences

in memory,19 we found that the memory advantage for events

that formed a larger narrative was over and above any advantage

at the word or sentence level.10 Our findings suggested that
C

episodic memory might be organized above and beyond words,

sentences, or events, on the basis of narrative coherence: the

degree to which individual units of information can be interre-

lated within a single narrative.9,11 In the present study, we as-

sessed whether narrative coherence shapes the way the brain

encodes and retrieves events in memory.

Little is known about how the brain assembles narratives from

individual events, but there is reason to think that the hippocam-

pus plays a critical role. Many studies suggest that the hippo-

campus can build memories that integrate information across

overlapping experiences,20–26 although this might not depend

on narrative coherence. For instance, when one encounters

any information that overlaps with a previous event (e.g., a recur-

ring ‘‘B’’ item in separated ‘‘A-B’’ and ‘‘B-C’’ pairs), this overlap

may trigger the hippocampus to form associations between

temporally distant experiences.22,23,25,26 Furthermore, some

findings suggest that encountering a new event can trigger the

hippocampus to reinstate activity patterns that correspond to a

prior, overlapping event, thereby embedding information from

the prior event intomemory for the new event.20,25,27 If the hippo-

campus can combine information across events during memory

encoding, this might facilitate subsequent recall of multiple

events.

However, overlapping information does not always result in

memory integration. In fact, long-standing evidence suggests

that events that share overlapping features can compete with
urrent Biology 31, 1–11, November 22, 2021 ª 2021 Elsevier Inc. 1

https://twitter.com/brendanics1
mailto:bcohnsheehy@ucdavis.edu
https://doi.org/10.1016/j.cub.2021.09.013


ll

Please cite this article in press as: Cohn-Sheehy et al., The hippocampus constructs narrative memories across distant events, Current Biology (2021),
https://doi.org/10.1016/j.cub.2021.09.013

Article
each other during memory retrieval, thus making these events

more difficult to remember.28,29 Furthermore, some findings sug-

gest that the hippocampus can hyper-differentiate representa-

tions of overlapping events,30,31 and results from another study

suggest that the hippocampus can simultaneously support the

ability to segregate and integrate overlapping associations.22

Recent models have attempted to delineate which conditions

lead to hippocampus-dependent memory integration versus dif-

ferentiation.20,30,32–34 These models generally focus on simple

associations between items and do not address any role for

narrative coherence. Narrative coherence may play an important

role in real-life memory—and, as our recent behavioral findings

suggest,10 narrative coherence might determine whether or not

events become integrated.

Recent evidence suggests that narrative coherence modu-

lates hippocampal activity.35,36 Milivojevic et al.36 used func-

tional magnetic resonance imaging (fMRI) to analyze patterns

of hippocampal activity evoked by repeated pairs of temporally

adjacent events. Although events were initially unrelated, some

event pairs could form a narrative with a subsequently pre-

sented, linker event—when events could become linked, hippo-

campal activity patterns became more similar between paired

events.36 This suggested that, after one initially encodes events,

hippocampal activity patterns might become modified to sup-

port a larger narrative. Related findings35 suggested that over-

lapping hippocampal activity patterns might only be observed

in participants who consciously recognize links between events.

However, overlapping activity patterns are not equivalent to

memory integration per se. If pattern overlap reflects memory

integration, then hippocampal pattern overlap should also sup-

port the ability to retrieve information from memory (i.e., during

recall). Critically, no study to date has demonstrated whether

narrative coherence modulates hippocampus-dependent mem-

ory integration across temporally distant events.

An additional possibility is that the hippocampus might inte-

grate events into a narrative, but only at specific moments.

Many recent findings37–41 suggest that the hippocampus

becomes particularly active when people perceive transitions

between events, or event boundaries.2,42 Although the signifi-

cance of boundary-evoked activation is unclear, several models

suggest that, at event boundaries, the hippocampus retrieves in-

formation from past events in order to construct a workingmodel

of a new event.27,43–45 A key prediction from thesemodels is that,

at the moment one perceives an event boundary, one might

begin to integrate distant events into a narrative. For instance,

re-encountering Melvin might not only mark the onset of a new

event, but also lead you to retrieve Melvin’s previous event and

integrate it with the new event.2,16,27,46

Building on prior work showing that narratives modulate activ-

ity in the hippocampus,35,36,47 we investigated whether the hip-

pocampus supports memory integration for temporally distant

events that form a larger, coherent narrative, by examining

hippocampal activity patterns during encoding and recall of

realistic events. fMRI was used to image hippocampal activity

while participants listened to fictional stories (Figure 1A), in

which recurring characters appeared in pairs of temporally sepa-

rated events. Critically, stories were written to include pairs of

events that could form one Coherent Narrative (CN), and pairs

involving an overlapping character in Unrelated Narratives
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(UNs; examples in Figure 1B). These events were embedded in

longer stories that did not involve these recurring characters.

For example, one 4-minute story (Figure 1A, story 2) followed a

protagonist who, by chance, encountered the characters Sandra

and Johnny, and in a subsequent story (Figure 1A, story 4), a

different protagonist encountered Sandra and Johnny. In one

version of these stories, events involving Sandra could be inte-

grated into a coherent narrative (e.g., two events that describe

a single dating experience) whereas events involving Johnny

were parts of unrelated narratives (e.g., losing a family recipe

in Event 1, evading financial troubles in Event 2). However,

both CN and UN events were distinct from the surrounding

plot, such that events involving recurring characters could only

form a larger narrative in the CN condition. Importantly, different

versions of events were pseudo-randomly assigned to different

subjects (STAR Methods), to minimize content-driven differ-

ences between CN and UN events. Participants returned 1 day

later, and they were scanned during detailed recall of events

involving each recurring character (Figure 1C).

We hypothesized that the hippocampus would play a dispro-

portionate role in supporting memory for CN events, as

compared with UN events. We tested this hypothesis by deter-

mining whether hippocampal activity patterns during memory

encoding, including activity at event boundaries, carried shared

information across CN events, and whether activity patterns dur-

ingmemory encodingwere reinstated during recall of CN events,

as compared to reinstatement during recall of UN events. As fol-

lows, our results suggest that the hippocampus supports the

construction of coherent narratives that integrate distant events

in memory.

RESULTS

Hippocampal activity bridges coherent narrative events
during memory encoding
Our overarching hypothesis was that hippocampal activity might

bridge distant events in memory, if the events can form a

coherent narrative. To assess this possibility, we first identified

the unique pattern of hippocampal activity (voxel pattern) corre-

sponding to each story event (STAR Methods; Figure 2A), and

we tested whether voxel patterns were more highly shared be-

tween CN events than UN events (i.e., higher pattern similarity).

Alternatively, if the hippocampus supported the integration of

any overlapping events (i.e., via a shared character), we would

not expect any difference in pattern similarity between CN and

UN events.

Additionally, drawing from models of event cognition and

narrative processing,2,16,43,45,46 we predicted that hippocampal

activity that is evoked by the onset of an event—at an event

boundary—would support memory integration. Each story was

written to include a priori event boundaries (Figure 1A), which

reliably evoked the perception of event boundaries in an inde-

pendent sample (point-biserial r = 0.85, p < 0.0001; Figure S1A;

STAR Methods). As in previous studies,37,39,40 a priori bound-

aries evoked increased activation in the right and left hippocam-

pus (Figure S1B). The time period that corresponded to the onset

and duration of boundary-evoked activation in the hippocampus

(TRs 5–11, 6.1–14.64 s following an event’s onset; Figure S1B) is

subsequently referred to as the ‘‘Boundary epoch’’ (Figure 2A).



Figure 1. Experimental paradigm

(A) Narrative stimuli presented during fMRI. On Day 1, four fictional stories were presented serially during scanning, as audio clips (240 s each), which were

punctuated by discrete event boundaries (green bars). Events involving recurring characters (Beatrice, Melvin, Sandra, Johnny; 40 s each) did not relate to the

more continuous plot events surrounding them. For two of these recurring characters (blue boxes and dashed lines), two temporally distant events could form one

Coherent Narrative (e.g., Sandra Events 1 and 2). In contrast, for two other recurring characters (red boxes), Events 1 and 2 belonged to UnrelatedNarratives (e.g.,

Johnny). For each participant, side characters were randomly assigned to either the Coherent Narrative or Unrelated Narrative conditions (i.e., this is one

example; see STAR Methods).

(B) Examples of narrative events. Synopses are provided for possible pairs of Coherent Narrative and Unrelated Narrative events.

(C) Recall assessment during fMRI. During scanning on Day 2, participants were asked to recall events involving each recurring character from the stories

presented on Day 1 (Coherent Narratives, blue; Unrelated Narratives, red). The amount of time spent on recall, and the amount of details recalled, varied from

character to character. Recall excerpts are presented within speech bubbles.
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The Boundary epoch accounted for the lag between the real-

time onset of an event and increased fMRI activation (i.e., the he-

modynamic response lag). For comparison, we also defined a

Post-Boundary epoch (Figure 2A), in order to examine activity

during the remainder of an event. Because each event spanned

33 timepoints, the Post-Boundary epoch encompassed 26 time-

points following the Boundary epoch (TRs 12–37, 14.64–46.36 s

following an event’s onset).

Within the right and left hippocampus, we computed voxel

pattern similarity between the Boundary and Post-Boundary

epochs of paired events (Figure 2A), and subsequently analyzed

pattern similarity values using a multi-level mixed-effects model

(STAR Methods, formula 1). This model tested whether narrative

coherence (CN versus UN) modulated pattern similarity across

events, and whether any effects of narrative coherence were

specifically driven by similarity between Boundary epochs (i.e.,

an interaction between narrative coherence and epoch). Further-

more, the mixed model statistically accounted for potential con-

founds: particular subjects, specific events that were presented

to subjects, and overall activation at boundaries.

As shown in Figure 2B, within the right hippocampus, this

model (Akaike information criterion [AIC] = �1039) revealed a
significant effect of narrative coherence (F(1,11.33) = 6.97, p =

0.02), indicating that pattern similarity in the right hippocampus

was higher for CN events, compared with UN events. However,

there was no significant interaction between narrative coherence

and epoch (F(2,257.71) = 0.09, p = 0.92; psR 0.10 for other fixed

effects). Because the interaction was not significant, we cannot

conclude that the narrative coherence effect was driven by

the Boundary epoch alone. These findings suggested that,

throughout encoding of an event (either Boundary or Post-

Boundary epochs), activity patterns in the right hippocampus

might bridge distant events that form a coherent narrative. A

follow-up analysis of timepoint-by-timepoint correlations be-

tween events revealed similar findings (Figure S2).

This pattern of findings was not evident in the left hippocam-

pus (Figures S2 and S3), wherein the mixed model (AIC =

�1103) revealed only a significant effect of overall boundary

activation on pattern similarity (F(1,289.69) = 12.18, p < 0.001;

for other fixed effects, ps > 0.36). Interestingly, an exploratory

analysis suggested that narrative coherence effects within

the right hippocampus were significant within the right posterior

hippocampus, but not the right anterior hippocampus (Figures

S3B and S3C). Although the implications of these findings
Current Biology 31, 1–11, November 22, 2021 3



Figure 2. Right hippocampal activity patterns bridge events that form a coherent narrative

(A) Across-event pattern similarity analysis. Within the left and right hippocampus (plotted on an individual subject’s structural MRI, in green), the unique spatial

pattern of activity (‘‘voxel pattern,’’ represented by cubes) was modeled for Boundary (dark green rectangles, TRs +5 to +11) and Post-Boundary epochs (gray

rectangles, TRs +12 to +37). Black bars represent the real-time beginning and ending of each Coherent Narrative and Unrelated Narrative event during scan-

ning—epoch definitions account for the lagged blood-oxygen-level-dependent (BOLD) response. Pattern similarity (Pearson’s r) was calculated between voxel

patterns at Event 1 and Event 2, and selectively averaged to yield three epoch-by-epoch measures of similarity: Boundary-Boundary (dark green line), Boundary-

Post-Boundary (light green lines), and Post-Boundary-Post-Boundary (gray line). See also Figure S1.

(B) Right hippocampal pattern similarity. Pearson’s correlations between Event 1 and 2 epochs were computed for Coherent Narrative and Unrelated Narrative

events. Mean pattern similarity for individual subjects (colored dots) is plotted on the basis of which epoch was being examined, and whether events could form

Coherent Narratives or not (Unrelated Narratives). Mixed-model fits predicting pattern similarity are visualized as 95% confidence intervals (see text for model

details). Note: pattern similarity is on a continuous scale, and zero or negative values simply reflect relatively lower similarity than positive values (i.e., not ‘‘no

similarity’’ or ‘‘negative similarity’’). Blue, Coherent Narratives; red, Unrelated Narratives. *p < 0.05, +p < 0.10. See also Figures S2 and S3.
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are unclear, a related study suggested that anterior and poste-

rior hippocampus provide differential support for memory

integration.22

Additionally, we assessed whether effects of narrative coher-

ence were driven by low-level text characteristics. If the hippo-

campus supports information about words and sentences,48–50

then hippocampal pattern similarity might simply reflect the de-

gree to which word- or sentence-level semantic information

overlaps across events. We therefore quantified textual similarity

between events using the Universal Sentence Encoder,51 and

we statistically accounted for textual similarity within models of

hippocampal pattern similarity (STAR Methods, formula 2).

Within the right hippocampus, this model (AIC =�1037) revealed

that, even after accounting for lower-level semantic similarity

between events, there was a significant effect of narrative coher-

ence (F(1,12.06) = 5.56, p = 0.036; other ps > 0.14). This sug-

gested that, within the right hippocampus, the degree to which

narrative coherence modulated pattern similarity across events

was not purely driven by lower-level semantic overlap between

events. This pattern of findings was not evident within the left

hippocampus (AIC = �1101; effect of overall boundary activa-

tion, F(1,288.70) = 12.17, p < 0.001; all other effects, ps > 0.58).

Hippocampal activity that bridges coherent narrative
events is reinstated during recall
One day after memory encoding, participants were scanned

while they freely recalled information about each pair of CN

and UN events (Figure 1C). Participants were oriented to recall
4 Current Biology 31, 1–11, November 22, 2021
as many details as possible from any of the events involving

each CN or UN character, in order to encourage participants to

recall events in an integrated manner. If activity patterns in the

right hippocampus provided a basis for integrating CN events

during memory encoding, we would expect that these activity

patterns would facilitate subsequent memory retrieval for CN

events.

We therefore investigated the degree towhich right hippocam-

pal voxel patterns from encoding were reinstated during recall

(i.e., ‘‘encoding-retrieval similarity’’; Figure 3A). Because preced-

ing analyses revealed pattern similarity effects across both

Boundary and Post-Boundary epochs, we pooled timepoints

from both epochs to measure reinstatement of whole-event ac-

tivity patterns from encoding (Figure 3A). We hypothesized that

pattern reinstatement would be disproportionately higher for

CN events compared with UN events.

However, in order to accurately predict how reinstatement

might work, it is important to consider how integration may

have unfolded during encoding. During encoding, there were

two events involving each CN and UN character (Event 1 and

Event 2; Figures 1A and 1B). Because events were presented

sequentially, Event 2 was the event that determined whether

there was any relationship between the two events—that is,

whether or not the two events could form a coherent narrative.

In other words, if narratives spanning Events 1 and 2 were bound

together, this binding should occur during Event 2. We therefore

predicted that Event 2 served as a key period for memory inte-

gration, specifically in theCN condition, and that activity patterns



Figure 3. Reinstatement of hippocampal activity from memory encoding supports recall of coherent narrative events

(A) Encoding-retrieval similarity. Pattern similarity (Pearson’s r) was calculated between activity from each event involving a recurring character at encoding (Event

1 or 2) and activity during delayed recall of events involving that character.

(B) Event 2 pattern reinstatement is higher for Coherent Narrative recall. Mean encoding-retrieval similarity for each subject (colored dots) is plotted for each

epoch of each event during recall. 95% confidence intervals represent mixed-model estimates (see text for model details). Note: pattern similarity is on a

continuous scale, and zero or negative values simply reflect relatively lower similarity than positive values (i.e., not ‘‘no similarity’’ or ‘‘negative similarity’’).

(C) Event recall predicted by Event 2 pattern reinstatement. Recalled details from Event 1 (circles) and Event 2 (triangles) are plotted for each specific event for

each subject, predicted by Event 2 pattern reinstatement. Colored lines represent mixed-model estimates (see text for model details).

Blue, Coherent Narrative; red, Unrelated Narratives. +p < 0.10, *p < 0.05, **p < 0.01.
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that were present during this interval would be beneficial for

recall of multiple events. In contrast, UN Event 2 would not pro-

vide an opportunity to form a single coherent narrative. Thus, we

predicted disproportionately higher reinstatement for CNEvent 2

relative to UN Event 2. Alternatively, if overlapping associations

(e.g., a recurring character) can drive the hippocampus to rein-

state activity patterns across events25 regardless of narrative

coherence, we might expect no difference in reinstatement be-

tween CN Event 2 and UN Event 2.

To test our hypothesis, we analyzed the degree to which right

hippocampal voxel patterns during Event 2 encoding were rein-

stated during recall (Figure 3A). We also analyzed reinstatement

of activity patterns from Event 1—however, because we theo-

rized that Event 2 served as the critical period for integration,

we did not expect any difference in Event 1 pattern reinstatement

between CN and UN events during the recall task. To assess the

overall pattern of reinstatement findings, we performed a multi-

level mixed-effects model (STARMethods, formula 3) that tested

whether encoding-retrieval similarity would be modulated by

narrative coherence (CN versus UN), and whether an effect of
narrative coherence would be limited to reinstatement of Event

2 (i.e., an interaction between narrative coherence and event

number). The model statistically accounted for several nuisance

variables: recall duration (28–299 TRs, �0.5–6 min per recall

cue), particular subjects, and particular event content.

This model (AIC = �1334.7) revealed a trending main effect of

narrative coherence (F(1,303.98) = 3.60, p = 0.059), which was

qualified by a significant interaction between narrative coher-

ence and event number (F(1,343.46) = 7.72, p = 0.006); no other

effects were significant (ps > 0.48). As shown in Figure 3B,model

estimates revealed that the significant interaction was driven by

higher reinstatement for CN than UN events, and that this effect

was specific to Event 2. Additionally, model estimates revealed

significantly higher reinstatement of CN Event 2 than CN Event

1. This does not signify that there was zero reinstatement for

other events, but that reinstatement was disproportionately

higher for CN Event 2. This pattern of findings remained even

after accounting for pattern similarity effects during memory en-

coding (see STAR Methods). Interestingly, an exploratory anal-

ysis revealed similar findings when applying an identical model
Current Biology 31, 1–11, November 22, 2021 5
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to predict reinstatement from Boundary epochs alone (AIC =

�1427.5; significant interaction of narrative coherence and event

number, F(1,343.00) = 7.58, p = 0.006).

These findings suggested that, in the right hippocampus, ac-

tivity patterns from Event 2 encoding were preferentially rein-

stated during recall of CN events. In line with our hypothesis,

this suggests that Event 2 provided an opportunity for memory

integration, and that hippocampal activity patterns during Event

2 may have provided a basis for integrating CN events in

memory.

Narrative coherence modulates the relationship
between hippocampal pattern reinstatement and
detailed recall
Having established that information from Event 2 was preferen-

tially reinstated during recall of CN events, our next analyses

assessed whether this reinstatement effect was behaviorally

relevant. In previous work, we found that, across three experi-

ments, participants were able to recall more details about CN

than UN events.10 In the present study, the number of details re-

called from CN events (mean 10.71 details per cue, SD = 9.4,

max 41.5) was numerically higher than recall from UN events

(mean 8.65 details per cue, SD = 9.1, max 40.0), although this

effect did not meet the threshold for statistical significance

(t(24) = 1.98, p = 0.059, Cohen’s d = 0.22). Examination of the

data revealed a large degree of inter-subject variance in recall

performance, andwe considered that this variancemight be bet-

ter explained by accounting for inter-subject differences in hip-

pocampal activity. If so, wewould expect that recall of CN events

should be predicted by reinstatement of right hippocampal activ-

ity patterns during recall.

Following up on our previous analyses (Figure 3B), we tested

whether reinstatement of right hippocampal activity patterns

from CN Event 2 was predictive of howmany details participants

recalled about CN events. In line with our prediction, there was a

significant positive correlation between mean CN Event 2 rein-

statement and mean recalled details for CN events (r = 0.41,

p = 0.048). That is, the degree to which Event 2 patterns were

reinstated during recall predicted the degree to which partici-

pants recalled CN events in detail. For comparison, we also

tested whether UN Event 2 reinstatement would predict detailed

recall. In contrast, there was no significant correlation between

mean UN Event 2 reinstatement and mean recall of UN events

(r =�0.23, p = 0.28). This initially suggested that narrative coher-

ence might modulate the relationship between right hippocam-

pal pattern reinstatement and detailed recall. To formally assess

this possibility, we designed a rigorous mixed-effects model that

could discern between several theoretical predictions at the level

of individual events.

In line with our pattern reinstatement findings (Figure 3B), we

reasoned that Event 2 provided an opportunity to integrate CN

events, but not UN events, in memory. If so, detailed recall would

be predicted by a statistical interaction between Event 2 pattern

reinstatement and narrative coherence. Furthermore, the recall

task was designed to elicit recall of multiple events—as

described previously,10,29 the ability to recall details from over-

lapping events depends on whether or not they can be easily

integrated. As such, if memory integration took place during en-

coding of CN Event 2, then pattern reinstatement from CN Event
6 Current Biology 31, 1–11, November 22, 2021
2 should not only predict how well Event 2 was recalled, but also

how well Event 1 was recalled, reflecting that these events

became integrated. In contrast, we did not expect that UN Event

2 provided a clear opportunity for memory integration and, as

such, we predicted that pattern reinstatement from UN Event 2

would be less predictive of recall from multiple overlapping

events. Alternatively, it was also possible that no memory inte-

gration took place during encoding of either CN or UN Event

2—if so, we might expect that CN or UN Event 2 pattern rein-

statement would predict recall of details from CN or UN Event

2, respectively, but not details from Event 1 (i.e., an interaction

between Event 2 reinstatement and which event was recalled).

With these hypotheses in mind, we designed a mixed-effects

model (STAR Methods, formula 5) to test whether and how re-

called details would be predicted by Event 2 pattern reinstate-

ment. Critically, this model tested whether the relationship be-

tween recall and pattern reinstatement would be modulated by

narrative coherence. Furthermore, the model also tested

whether Event 2 pattern reinstatement would differentially pre-

dict the number of details recalled about Event 1 versus Event

2. After accounting for nuisance regressors (recall duration, indi-

vidual subjects, specific events), this model (AIC = 1120.5) re-

vealed a significant main effect of narrative coherence

(F(1,160.17) = 4.40, p = 0.037). Interestingly, this suggested

that, after accounting for a full pattern of mixed effects, there

was significantly higher recall for CN than UN events.

Moreover, themain effect of narrative coherencewas qualified

by a significant interaction between narrative coherence and

Event 2 reinstatement (F(1,156.42) = 5.20, p = 0.024). As shown

in Figure 3C, this interaction reflected that in the right hippocam-

pus, the predicted relationship between Event 2 pattern

reinstatement and recalled details (from either event) was signif-

icantly more positive for CN events than for UN events (t(156) =

2.28, p = 0.024). That is, reinstatement of hippocampal activity

patterns from CN Event 2 was associated with a greater behav-

ioral benefit for recalling multiple events than reinstatement from

UN Event 2. Consistent with our hypothesis, this suggests that

hippocampal activity from Event 2 preferentially supported

memory integration for CN events. Similar findingswere revealed

after removing potential outliers (see STAR Methods). Interest-

ingly, similar findings were also revealed when examining

reinstatement fromBoundary epochs alone (AIC = 1114.7; signif-

icant interaction of Event 2 reinstatement by narrative coher-

ence, F(1,160.15) = 10.56, p = 0.001).

No other fixed effects or interactions were significant (ps >

0.34). For one, there were no overall differences in recall of Event

1 versus Event 2. Furthermore, Event 2 reinstatement did not

differentially predict recalled details for Event 1 versus Event 2,

even in the case of UN events (i.e., UN Event 2 reinstatement

did not predict UN Event 2 recall). This null effect likely reflects

the nature of the recall task (see Discussion).

Post hoc analyses of cortical networks
Our study was specifically designed to test a priori hypotheses

about hippocampal contributions to memory. It is also possible

to generate testable hypotheses about many other brain areas

that might be involved in this task. For completeness, we have

included post hoc analyses (see STAR Methods) that test for

narrative coherence effects, within two key cortical networks
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that interact with the hippocampus52–55: the posterior medial

(PM) network, which supports information about event contexts

(e.g., types of situations); and the anterior temporal (AT) network,

which supports information about particular entities within

events (e.g., people or objects). Because stories were presented

aurally, we also investigated auditory cortex.

If, for instance, narrative coherence findings within the hippo-

campus were driven by contextual similarity between events,

one might also expect narrative coherence effects within the

PM network. However, there were no significant effects of narra-

tive coherence within the PM network. Interestingly, there were

significant effects of narrative coherence within the AT network

and auditory cortex. These findings are inconclusive, and further

work is needed to understand how cortical networks contribute

to memory integration for coherent narrative events.

DISCUSSION

In the current study, we investigated whether the hippocampus

supports a narrative-level organization for episodic memories,

by integrating distant events into a larger narrative. Consistent

with this hypothesis, activity patterns in the right hippocampus

during memory encoding were more similar across two tempo-

rally separated events that formed a coherent narrative,

compared with unrelated events that shared an overlapping

character. Activity patterns elicited during encoding of coherent

narrative events were preferentially reinstated when these

events were recalled 1 day later. In particular, activity reinstate-

ment was disproportionately higher for the second of two events

that formed a coherent narrative—that is, the event that provided

the clearest opportunity to meaningfully integrate information

across events. Furthermore, narrative coherence determined

the degree to which reinstatement of hippocampal activity pat-

terns from the second event predicted the ability to recall details

about both events within a narrative.

Taken together, these findings suggest that, rather than simply

integrating memories of overlapping experiences, the hippo-

campus supports the construction of narratives that integrate

distant events in memory. A considerable body of evidence sug-

gests that hippocampus-dependent processes can support

memory integration21–23,25,26—the ability to put together infor-

mation across two simple associations with an overlapping

element—although it is also the case that the hippocampus

can assign highly differentiated representations to overlapping

associations.30,31 In fact, some findings have suggested that

the hippocampus keeps event representations distinct during

memory encoding, instead supporting integration of overlapping

associations on the fly during memory retrieval.33,56

Although important questions remain about the dynamics of

memory integration in these studies, it is important to clarify dif-

ferences between the present study and previous work onmem-

ory integration. Studies of memory integration typically focus on

overlapping associations that share the same element—for

instance, two houses or scenes that are associated with the

same face.24,57 In the present study, both CN and UN events

shared overlapping characters, yet hippocampal pattern similar-

ity was significantly higher across CN events, and CN event pat-

terns were preferentially reinstated during subsequent recall.

Thus, overlap across events, although potentially necessary,
was not sufficient to integrate information across distant events.

Furthermore, in contrast with prior work, this study investigated

memory integration in the context of complex, realistic events

and narratives.

A few studies have shown that hippocampal activity during

encoding of temporally adjacent events can be sensitive to

narrative coherence.35,36 Building on these studies, the present

findings directly support a relationship between narrative coher-

ence effects in the hippocampus and detailed recall of tempo-

rally distant events. In other words, the present findings suggest

that narrative coherence doesmore thanmodulate hippocampal

activity across repeatedly presented events—rather, they

directly support the hypothesis that narrative coherence drives

hippocampal memory integration, and that this integration can

even take place across events that are encountered at disparate

times.

Aside from the present results, only a few studies35,36,47,58

have implicated the hippocampus in narrative construction,

and most neuroimaging studies of narrative processing have

focused on cortical areas, particularly within the PM

network.37,58–62 Notably, there are important methodological dif-

ferences between prior work and the present study, in which

post hoc analyses did not reveal significant PM network effects.

Most fMRI studies of narrative structure have analyzed activity

patterns averaged over the course of an entire event.37,54,61,63

Although PM network activity patterns are often stable

throughout an event,37,61 hippocampal activity tends to be

more dynamic.39 For instance, Reagh and Ranganath54

compared activity patterns across repetitions of a 40-second

film, and results showed that hippocampal patterns primarily

carried information about the time period immediately after the

onset of the film.54 This finding is interesting, because some of

the key hippocampal findings in the present study were seen

during the Boundary epoch.

To be clear, we can neither conclude, nor rule out, that event

boundaries played a unique or disproportionate role in inte-

grating distant events. Our hypothesis-driven analyses revealed

that pattern similarity was higher across CN events than across

UN events during the Boundary epoch, and between the Bound-

ary epoch and Post-Boundary epoch. In other words, hippocam-

pal activity during the Boundary epoch carried similar informa-

tion across CN events. Notably, several models suggest that

when a new event begins (i.e., at an event boundary), people

can update their current representation of an event, by retrieving

information about relevant past events.7,27,43–45 In one recent

model, Lu et al.45 demonstrated that it is computationally advan-

tageous to restrict hippocampal encoding and retrieval of

cortical states to periods around an event boundary, and this

fits with the established idea that people often rely on episodic

retrieval to build mental representations of an ongoing

event.7,27,43,44,46,64 That is, even if event boundaries serve as

‘‘walls’’ between temporally adjacent events, hippocampal

retrieval at boundaries might construct ‘‘bridges’’ across tempo-

rally distant events.

Interestingly, other recent findings have suggested that

boundary-evoked hippocampal activity supports storage of

events that precede an event boundary.37,39,41 These findings

are not incompatible with findings of the present study. In fact,

event boundaries mark both the onset of an event and the offset
Current Biology 31, 1–11, November 22, 2021 7
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of a preceding event. Our single-trial modeling approach (STAR

Methods) enabled us to statistically separate the components of

hippocampal activity that correspond to an ongoing event from

the signal corresponding to temporally adjacent events, enabling

us to specifically test hypotheses about boundary-evoked hip-

pocampal activity patterns at the start of an event. Future work

should determine whether the correspondence of hippocampal

activity at event boundaries to memory for preceding and subse-

quent events reflects one common, underlying process (e.g., up-

dating representations in response to high prediction er-

ror41,44,45,65) or multiple processes (e.g., memory storage

versus retrieval).

Another key finding is that hippocampal activity patterns dur-

ing CN events were preferentially reinstated during memory

retrieval, and this reinstatement wasmore predictive of individual

differences in memory for CN than UN events. In our previous

behavioral study,10 memory performance was significantly

higher for events that formed a coherent narrative than for over-

lapping, but unrelated events. In order to adapt this paradigm for

fMRI pattern analyses, we increased the number of trials per

condition by presenting stories twice during memory encoding.

It is likely that repeated presentation enabled participants to

encode more information about UN events, which would explain

why detailed recall was numerically, but not significantly, higher

for CN than UN events. Nonetheless, participants showed pref-

erential reinstatement of information from Event 2—precisely

when integration would be expected to occur—during recall of

CN events. If hippocampal activity simply reflected successful

encoding of Event 2, we would expect to see that reinstatement

would be equally predictive of memory performance for CN and

UN events, because memory performance was not significantly

different across these conditions. In fact, reinstatement of infor-

mation during this key period when participants could build a

coherent narrative was predictive of memory for CN events,

whereas reinstatement of information from an independent event

did not significantly predict memory performance.

Importantly, the recall task cued memory for multiple events,

rather than one event at a time, in order to assess effects of

memory integration. Notably, previous work suggests that re-

encountering a feature of a prior event (i.e., during Event 2) can

act as a reminder that enables online retrieval of memory for

the prior event, and therefore embeds information about the prior

event within memory for the new event.46,66 This kind of

reminder-evoked integration can be useful for narrative compre-

hension,16,67 and it may have provided a mechanism for inte-

grating CN events, explaining the correspondence between

Event 2 pattern reinstatement and recall of both CN events.

However, reminders do not always lead to integration, and can

also lead to differentiation or competition between events.46,64,68

This may explain why reinstatement from UN Event 2, in which

reminders would not easily lead to integration, did not provide

a clear benefit for recall of multiple overlapping events. We

also speculate that adjusting the recall task to cue recall of one

event at a time might reveal a more specific, timepoint-by-time-

point correspondence between neural pattern reinstatement and

recall of details from specific events.

Finally, it might be of interest that significant effects of narra-

tive coherence were observed within the right hippocampus,

but not the left hippocampus. It is unclear whether the right
8 Current Biology 31, 1–11, November 22, 2021
hippocampus plays a disproportionately important role in narra-

tive construction. Notably, other studies have implicated the

right hippocampus in the integration of information across over-

lapping events,20,47 but it is also the case that fMRI studies of

hippocampal function often report significant effects in only

one hemisphere.69 Further hypothesis-driven research is needed

to understand the relative contributions of the right and left hip-

pocampus to episodic memory.

In closing, even though life’s events occur at disparate times,

the hippocampus can formmemories that integrate events into a

larger, coherent narrative. By bridging the divide between distant

events, the hippocampusmay support a narrative-level architec-

ture for episodic memory.
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Freesurfer, Destrieux atlas 71 https://surfer.nmr.mgh.harvard.edu

Afex package for R Henrik Singmann https://github.com/singmann/afex

Permuco package for R Jaromil Frossard https://cran.r-project.org/web/

packages/permuco/

RSA toolbox 72,73 http://www.mrc-cbu.cam.ac.uk/

methods-and-resources/toolboxes/

Universal Sentence Encoder 51 https://ai.googleblog.com/2018/05/

advances-in-semantic-textual-similarity.html
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packages/emmeans/index.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Brendan

Cohn-Sheehy (bcohnsheehy@ucdavis.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Upon publication, behavioral and neuroimaging data, analysis code, and other materials will be available via the Open Science

Framework: https://osf.io/7zsxd/. Any additional information required to reanalyze the data reported in this paper is available from

the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Human subjects protocols were approved by the UC Davis Institutional Review Board.

Functional MRI study

Thirty-six right-handed participants aged 18-32 years-old (mean age = 24.4, SD = 3.6; 24 female, 12 male) were recruited to partic-

ipate in the imaging study. Among other criteria, participants were screened for native English language fluency. After informed

consent was obtained, additional screening at the time of scanning revealed that two of these participants had contraindications

for MRI scanning, and thus could not be included. Of the thirty-four remaining participants scanned on Day 1, seven participants

were excluded because they did not return for the recall session on Day 2 (due to unanticipated issues with scanner or peripherals,

or substantial motion or imaging artifacts on Day 1). For one additional subject, a scanner error precluded imaging during two of

the eight story presentation scans on Day 1, however this participant was able to complete the story listening task (without

concurrent scanning during the final two blocks), and was therefore retained for participation on Day 2. As a result, twenty-seven

participants were scanned on Day 2. Two of these subjects were excluded because they were unable to successfully recall any

details during the recall task. In all, twenty-five participants (mean age = 25.2, SD = 3.7; 15 female, 10 male) were included in the
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analyses reported in this paper, twenty-four of whom had sufficient data quality during recall to be included in encoding-retrieval

similarity analyses.

Event boundary ratings

An independent sample of eighteen participants aged 18-26 years-old (mean age = 20.4, SD = 2.0; 12 female), screened for native

English language fluency, provided informed consent and were recruited to provide annotations of event boundaries (i.e., no imaging

data was collected).

METHOD DETAILS

Experimental stimuli
The stimulus design is depicted in Figures 1A and 1B, and has been described elsewhere.10 We constructed four fictional stories in

which we manipulated whether temporally-distant events could form a coherent narrative (Data S1). Story audio was scripted, re-

corded, and thoroughly edited by the first author (BICS) to ensure equivalent lengths for all sentences (5 s each), events (8 senten-

ces/40 s each), and stories (6 events/240 s each), and to avoid any differences in perceptual distinctiveness (i.e., similar audio quality

and smooth transitions between sentences). Importantly, most 40 s events were initiated and terminated by shifts in information that

are known to trigger the perception of event boundaries (e.g., characters entering or exiting, temporal shifts like ‘‘20 minutes

later’’).4,74 Two additional boundaries marked the start and end of each story, respectively. These seven a priori event boundaries

for each story (green bars in Figure 1A; confirmed by human raters, Figure S1A) provided the basis for subsequent fMRI analysis.

Two of the stories are centered on a character named Charles, who is attempting to get a big scoop for a newspaper, and two are

centered on a character named Karen, who is attempting to find employment as a chef. To examine the effects of narrative-level or-

ganization on memory, we incorporated events involving key ‘‘side-characters’’ into each story (Figure 1A). Two stories involved

‘‘Beatrice’’ and ‘‘Melvin’’ as side-characters, and two involved ‘‘Sandra’’ and ‘‘Johnny.’’ Each side-character appeared in two tempo-

rally-distant, distinct events that occurred 6-12 minutes apart (lags matched between CN and UN conditions), in disparate contexts

across two unrelated stories. For instance, Sandra’s first event (Event 1) occurs in Story 2, when she calls Charles, who is sitting at a

park at noon on a Tuesday. Sandra’s second event (Event 2) occurs in Story 4, when Karen runs into her at a French restaurant, at

early evening the next day. Events involving the side-characters were tangential to adjacent main plot events which centered on

Charles and Karen (i.e., they were ‘‘sideplots’’).

Critically, for two recurring side-characters, these sideplot event pairs could form a Coherent Narrative (CN) about one particular

situation involving that side-character. In contrast, for the other two recurring side-characters, each sideplot event described a

different situation involving that side-character, such that the two sideplot events could not easily form a singular coherent narrative

(Unrelated Narratives, UN). Each story contained one CN event and one UN event (see Figure 1A). Because the stimulus design

controlled for several other features that could support integration of sideplot events (temporal proximity, contextual similarity, atten-

tion to intervening main plot events), only CN events, and not UN events, could be easily integrated into a larger narrative.

We sought to control for any effects of specific event content or character identity that could confound the coherencemanipulation,

by randomizing CN and UN event content across subjects. For each side-character, we created two alternate pairs of CN events

(e.g., Sandra Events 1 and 2, version A; Sandra Events 1 and 2, version B) which had similar syntax. For a given subject, two

side-characters were randomly selected to be CN, and two side-characters were randomly selected to be UN. If a side-character

was selected to be CN, one of the two possible CN event pairs was selected (e.g., Sandra Events 1 and 2, version A). If a side-char-

acter was selected to be UN, the two events were drawn from different possible CN event pairs, such that they belonged to unrelated

narratives (e.g., Sandra Event 1, version A, and Event 2, version B). For instance, in one CN version for Sandra, she calls to discuss

someone she is dating in Event 1, and the aftermath of that date occurs in Event 2. In one UN version for Sandra, she calls to discuss

someone she is dating in Event 1, and she is seen hiding from art sponsors in Event 2.

This approach resulted in 32 possible arrangements of CN and UN events, which were pseudo-randomly assigned across sub-

jects. Formost subjects, 1 of 32 versionswas randomly assigned by a seeded randomnumber generator inMATLAB. After two-thirds

of recruited subjects were scanned, it was determined that some versions had been under-sampled, therefore we generated a

randomly-selected subset of the under-sampled versions to determine which versions were assigned to the remaining subjects.

Behavioral tasks
For the fMRI study, on Day 1, subjects first completed consent forms, demographics questionnaires, and MRI screening. Prior to

entering the scanning facility, participants completed brief familiarization tasks that were aimed at facilitating their attention to the

story presentation task. Then, structural and functional imagingwas performed, including the story presentation task. OnDay 2, addi-

tional structural and functional imaging was performed, including the recall task. Familiarization, story presentation, and recall tasks

were administered in MATLAB (https://www.mathworks.com/products/matlab.html) using Psychophysics Toolbox 3 (http://www.

psychtoolbox.org). For event boundary ratings, an independent subject sample completed a one-day experiment in which they pro-

vided annotations of event boundaries.

Familiarization tasks (Day 1)

As described previously,10 three brief tasks were administered to familiarize participants with character names and relationships, to

orient participants to the upcoming stories, and to increase the likelihood that character names and relationships could be used as

successful recall cues. Participants were first presented with character names, then character relationships, and then a test on
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character relationships (feedback provided). To encourage familiarity, these tasks incorporated face pictures for each character that

were selected for high memorability.75

Story presentation (Day 1)

Stories were presented aurally using MRI-compatible Sensimetrics model S14 earbuds for binaural audio (https://www.sens.com/

products/model-s14/). Stories 1-4 were, respectively, presented in scanning runs 1-4, and were presented again in the same order

(Stories 1-4 in runs 5-8; Figure 1A). Stories were repeated in order to increase the number of available trials and timepoints for pattern

similarity analyses. Prior to the task, participants were instructed verbally and onscreen that they would hear fictional clips involving

characters from the familiarization tasks, and that they should devote their full attention and imagination to the clips as if they were

listening to a book they enjoyed. Furthermore, they would later be asked to remember these stories in detail. Each story run began

with 7 empty scanning timepoints, after which stories were presented binaurally through over-ear headphones, followed by 7 addi-

tional empty scanning timepoints. Only a white fixation cross was present onscreen during each story.

Recall task (Day 2)

Prior to performing the scanned recall task, participants were instructed that, after seeing the name of each character, they were to

recall everything they could remember involving the particular character, from all stories, in as much detail as possible.10 They were

encouraged to attempt to recall as many details as possible for at least five minutes, and, if they were able to remember additional

information, they were allowed to continue beyond five minutes. We did not instruct participants to recall events in any particular or-

der, nor did we explicitly instruct participants to integrate information between events. Within one extended scanning run (Figure 1C),

participants were cued with the four CN and UN side-characters, in a randomized order. Each cue was presented onscreen, and

included their relations to main protagonists (e.g., ‘‘Melvin Doyle (Charles Bort’s neighbor, Karen Joyce’s friend)’’). This cueing

approach was designed to encourage recall of both Events 1 and 2, thus providing an opportunity for participants to naturally inte-

grate CN events during recall (or not, as hypothesized for UN events). After cueing CN and UN characters, cues were shown for the

two main protagonists, in a randomized order. Each cue was preceded and followed by 7 empty scanning timepoints, with a white

fixation cross onscreen. Spoken recall was recorded using an Optoacoustics FOMRI-III MRI-compatible microphone (https://www.

optoacoustics.com/medical/fomri-iii).

Event boundary ratings

An independent sample completed the Story Presentation task at a desktop computer (i.e., without brain imaging), with an additional

instruction. Participants were presented with one of two versions of the story, and during listening, were asked to press the spacebar

whenever they perceived that one event had ended, and another event had begun.

Recall scoring
Free recall performance was scored using a procedure developed in our previous behavioral experiments with a similar paradigm,10

andwhich adapted awell-characterized scoringmethod from the Autobiographical Memory Interview.76 Recall data were scored in a

blinded fashion by segmenting each participant’s typed recall into meaningful detail units, and then determining how many of these

details could be verified within specific story events (Data S2 and S3). Briefly, each recall transcript was segmented into the smallest

meaningful unit possible (‘‘details’’), and details were assigned labels that describe their content. We primarily sought to label details

that could be verified within the story text (‘‘verifiable details’’). Verifiable details are details that specifically refer to events that center

on the cued character (i.e., neither inferences about cued events, nor ‘‘external details’’ about other characters or events), which are

recalled with some degree of certainty (e.g., not preceded by ‘‘I think’’ or ‘‘Maybe’’), and which do not merely restate recall cues or

other previously recalled details for a given cue.

We were also interested to discern recall performance for each CN or UN event (Events 1 or 2). For each CN or UN cue, verifiable

details that referred to one particular event were labeled as ‘‘Event 1’’ or ‘‘Event 2.’’ If a verifiable detail could have originated from

either Event 1 or Event 2, it was scored as ‘‘Either’’; these details were rare (X = 0.06 details per cue, SD = 0.24 details/cue, max = 1.5

details/cue). Finally, if a verifiable detail merged information from both Event 1 and Event 2, it was marked as ‘‘Integrated’’; these

details were both rare and only observed for CN events (X = 0.14 details/cue, SD = 0.56 details/cue, max = 4.5 details/cue). To ensure

that analyzed details were event-specific, Either and Integrated details were excluded from all reported analyses.

Audio transcription (AG, EM, JD,MD) and recall scoring (EM, JD, MD) was performed by individuals whowere blinded to the exper-

imental hypotheses and coherence conditions. Each participant’s recall transcript was first segmented by two raters, who were

required to agree on the particular start and end times for each segment. Each rater subsequently scored the recall segments for

verifiable details. Interrater reliability (IRR) for CN and UN events was high (mean Pearson’s r = 0.95), and took into account how

many verifiable details were scored per event label (1, 2, Either, Integrated), per character, and per participant. All reported compar-

isons between imaging and recalled details are based on counts of verifiable details for CN or UN events, averaged across raters.

MRI acquisition
Scans were acquired at the UC Davis Imaging Research Center on a Siemens Skyra 3T scanner with a 32-channel head coil. Func-

tional magnetic resonance imaging (fMRI) was performed using multi-band gradient-echo echo planar imaging (TR = 1220 ms, TE =

24ms, FA = 67, MB Factor = 2, FOV = 19.2cm, matrix: 64 3 64, voxel size: 3.0mm isotropic, 38 slices). In order to isolate functional

activity within particular structures of the brain, we also collected high-resolution structural imaging using a T1-weighted magneti-

zation prepared rapid acquisition gradient echo (MPRAGE) pulse sequence (1 mm3 isotropic voxels). To ensure proper alignment

between functional images from encoding and recall, we collected structural scans on both days.
e3 Current Biology 31, 1–11.e1–e7, November 22, 2021

https://www.sens.com/products/model-s14/
https://www.sens.com/products/model-s14/
https://www.optoacoustics.com/medical/fomri-iii
https://www.optoacoustics.com/medical/fomri-iii


ll

Please cite this article in press as: Cohn-Sheehy et al., The hippocampus constructs narrative memories across distant events, Current Biology (2021),
https://doi.org/10.1016/j.cub.2021.09.013

Article
On both Day 1 and Day 2, we first collected a brief localizer, and then the MPRAGE. We then adjusted the field of view for

subsequent functional imaging to prioritize full inclusion of the temporal lobes (i.e., excluding some dorsal cortex, if necessary)

and to align to the AC-PC axis. Initial shimming was then performed during a brief, task-free functional scan, after which we checked

for artifacts (e.g., ghosting, aliasing) and determined whether the field of view needed to be adjusted (if so, this scan was repeated,

with re-shimming). These preliminary scans were followed by functional imaging—story presentation scans on Day 1, and recall

scans on Day 2. As time permitted, we additionally collected task-free functional imaging (Day 1), diffusion tensor imaging (Day 1

or Day 2), or additional task-concurrent imaging (Day 2, following the recall task). These additional scans are beyond the scope of

the current experiment, and will be reported elsewhere.

MRI preprocessing
Images were processed in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), including slice-time correction and

realignment. After realignment, we checked for data quality using theMemoLabQAToolbox (https://github.com/memobc/memolab-

fmri-qa), which identifies excess motion and suspect timepoints or voxels within scanning runs using base functions in MATLAB,

SPM, and ArtRepair (https://www.nitrc.org/projects/art_repair/), as well as detailed plots of signal intensity across all brain voxels

and timepoints for each scanning run.77 Furthermore, the QA Toolbox uses realignment parameters to create 6-directional motion

regressors for each scan, which we implemented in subsequent models.

We excluded scanning runs if they exceeded 3mmmotion in any direction cumulatively across the scanning session, or if > 20%of

timepoints were identified as suspect based on framewise displacement > 0.5mm or large deviations in signal intensity. We then

merged realigned images into 4-dimensional files and used ‘‘film mode’’ in FslView (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView/

UserGuide) to inspect whether realignment failed – that is, whether there were any visible ‘‘jumps’’ between volumes after realign-

ment. As previously mentioned, these approaches led us to exclude some subjects from participation in Day 2 (see Participants,

above). When checking data quality for recall scans, we identified poor realignment due to large framewise displacement in two sub-

jects. We attempted to salvage all data that preceded thesemoments of framewise displacement, by excluding subsequent volumes

and re-performing realignment. This approach enabled us to salvage most of the recall scan for one subject (including all CN and UN

recall), however, realignment still failed for the other subject. As such, one out of the twenty-five subjects could not be incorporated

into encoding-retrieval similarity analyses.

Functional EPIs were co-registered with structural MPRAGE scans from the same day (Day 1 or Day 2). In order to compare func-

tional volumes across days, we aligned images from Day 1 and Day 2, using the following approach. We co-registered Day 2

MPRAGEs to Day 1 MPRAGEs, and we applied these co-registration parameters to the realigned Day 2 images. This enabled the

Day 2 functional images to directly overlap with Day 1 functional images. Additionally, we performed tissue segmentation on core-

gistered Day 1 MPRAGE scans, which we used to create brainmasks out of gray matter, white matter, and cerebrospinal fluid seg-

mentations. For multi-voxel fMRI analyses (see below), these brainmasks were used to mask out extraneous voxels from first-level

models of encoding and retrieval.

Furthermore, this enabled us to use the same structurally-defined regions of interest (ROIs) for both encoding and recall. We used a

published probabilistic atlas of the medial temporal lobe (https://neurovault.org/collections/3731/)70 to define the hippocampus,

perirhinal cortex, and parahippocampal cortex, within each subject’s structural MPRAGE, by reverse-transforming these ROIs

from template space (in MNI space) to native space (per subject) using Advanced Normalization Tools (ANTs; http://stnava.

github.io/ANTs/). Each ROI was visually inspected against the native space scan. Because this parcellation separately defines the

head, body, and tail of the hippocampus, we obtained whole-hippocampus ROIs by merging the head, body, and tail into one

ROI on each side of the brain (left and right). As previously described,40 for exploratory analyses of right hippocampal subregions

(Figure S3), we merged the right hippocampal body and tail ROIs to create a right posterior hippocampus ROI, and used the right

hippocampal head as the right anterior hippocampus ROI; these ROIs had similar counts of voxels. Other cortical ROIs which

were implemented in post hoc analyses (see Ancillary analyses, below) were derived from individual subject parcellations in Freesur-

fer (https://surfer.nmr.mgh.harvard.edu), using the Destrieux atlas.71 ROIs were then co-registered and resliced to functional images.

Univariate measures of boundary-evoked activation
Boundary versus mid-event timepoints

For univariate analysis of fMRI activation at event boundaries, structurally aligned BOLD data were smoothed with a 6mm-FWHM

smoothing kernel and filtered with a 128 s high-pass temporal filter prior to analysis. We modeled hippocampal activation at event

boundaries using subject-level generalized linear models (GLMs) in SPM12. In order to control movement related confounds, all

models include 6 rigid-body motion regressors (3 translational, 3 rotational). In line with published analyses of event boundary

activation,39 these models incorporated finite impulse response functions (FIRs) to model activation at event boundaries in a time-

point-by-timepoint fashion. The FIR approach enabled us to not only replicate the previous finding that hippocampal activation in-

creases at event boundaries. It also enabled us to determine the lag between the onset of an event and the fMRI response to an event

boundary. Furthermore, this enabled us to determine how long the hippocampus exhibits activation at event boundaries, such that

we could use this epoch to constrain subsequent multivoxel fMRI analyses (modeled separately).

Event boundaries were defined a priori—theywere intrinsic to the stimulus design (starts and ends of 40 s events; Figure 1A).Within

the GLMs, we modeled activation at event boundaries (Boundary-Adjacent timepoints) versus Mid-Event timepoints (20 s into each

event), which did not contain any shifts in information that were expected to trigger event boundaries (see story text, Data S1).
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Importantly, we did not distinguish between specific types of events in this model (e.g., CN, UN, main plot). FIRs were modeled

from �2 to +16 TRs around each timepoint—we selected this window in order to model all available event timepoints with minimal

overlap between Boundary-Adjacent andMid-Event windows. As such, the GLM resulted in beta images for each regressor, for each

subject, which we then masked using the left and right hippocampus ROIs, averaging betas within each ROI, for each condition and

each timepoint (e.g., Boundary-Adjacent TR +3, Mid-Event TR +14, etc.).

These averaged betas were then imported into RStudio for visualization and statistical analysis. Analyses of variance were per-

formed using the Afex package in R (https://github.com/singmann/afex), including Greenhouse-Geisser corrections for any non-

sphericity. For bilateral hippocampus, permutation tests were performed using Permuco (https://cran.r-project.org/web/packages/

permuco/), testing for main effects at every timepoint using 100,000 permutations and a p < 0.05 threshold for selecting clusters of

significant timepoints, and then corrected for significance based on the mass of each cluster.78 For post hoc analyses of cortical net-

works (see Ancillary analyses, below), the cluster threshold was adjusted for the number of models performed (3 models, therefore

p < 0.017). This approach enabled us to account for interdependency between adjacent timepoints, in line with well-documented

approaches for time-series analysis of neuroimaging data.79

Activation during CN and UN events

To supplement the multivoxel fMRI analyses described below, we separately quantified univariate activation for CN and UN events,

and incorporated this measure (‘‘overall boundary activation’’) as a fixed effect in mixed models of hippocampal pattern similarity

during memory encoding (see Multi-level mixed-effects models, below). In contrast to the univariate analysis reported above, this

was performed using beta volumes which were initially modeled for multivoxel fMRI analysis (see Single-trial models, below), and

then smoothed with a 6mm-FWHM smoothing kernel for use in univariate analysis. We then extracted beta values during the Bound-

ary epoch, and averaged these beta values within left and right hippocampus ROIs.

Multivoxel fMRI analysis
Single-trial models

We isolated the unique patterns of activity evoked by each CN or UN event during encoding, and each CN or UN cue during recall,

using single-trial modeling (LS-S approach).80,81 Specifically, we used finite impulse response functions (FIRs) to extract timepoint-

by-timepoint activity in each voxel, for each modeled event for a given subject. These models were performed on unsmoothed data,

in order to optimally characterize spatially-distributed patterns of activity.72 For each story event (CN or UN), we modeled each time-

point (�2 TRs to + 45 TRs around the event onset) with a separate regressor, and used additional regressors to model each timepoint

for all other story events within a given scanning run. This approach enabled the activity within each timepoint of a given event to be

distinguished from activity from corresponding timepoints for all other events within a scanning run. The �2 to +45 TR window was

designated to include extra available timepoints around the starts and ends of an event in order to: (1) differentiate activity corre-

sponding with the event of interest from activity corresponding to adjacent events; and (2) capture the hemodynamic lag in the

BOLD response around event boundaries (seen in Univariate analysis of boundary-evoked activation, above).

For recall, we used a similar approach to model activity at each timepoint during a specific character cue, however, the number of

available timepoints varied from cue to cue. For each recall cue, we therefore modeled timepoint regressors from �2 TRs before the

onset of a recall cue to +7 TRs after the offset of that recall cue (corresponding with inter-cue times during scanning), and an equiv-

alent number of regressors was designated to model activity from any other recall cue in the extended scanning run. For all models,

we incorporated a 128 s high-pass filter as well as 6 rigid-body motion regressors (3 translational, 3 rotational). This approach

enabled us to distinguish patterns of activity that were evoked by each recall cue.

Representational similarity analysis

Once we isolated the unique patterns of activity associated with each story event and recall cue, we sought to test our hypotheses by

comparing these patterns of activity across events. This type of analysis is referred to as Representational Similarity Analysis (RSA).73

In brief, RSA involves extracting the pattern of activity that is spread across a group of voxels in a given part of the brain (a ‘‘voxel

pattern’’), and computing correlations between voxel patterns that are evoked by different trials in an experiment. If voxel patterns

aremore highly correlated between trials in one experimental condition versus another, this provides evidence to suggest that which-

ever information distinguishes between those conditions is supported by that particular area of the brain.

To this end, we adapted several functions from the RSA Toolbox (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/

toolboxes/) and developed custom code in MATLAB. Voxel patterns were extracted within each ROI for a given subject, for every

modeled timepoint for every trial (story event or recall cue). For each subject, and within each ROI, we then constructed a represen-

tational similarity matrix (RSM), by correlating voxel patterns (Pearson’s r) from everymodeled timepoint with everymodeled timepoint.

To test our hypotheses about how activity patterns are shared between CN versus UN events, and between these events and

recall, we selectively averaged correlations from the overall RSM. For analyses of encoding, we selected all correlations between

timepoints from two events involving the same CN or UN character (e.g., Beatrice Event 1 versus Beatrice Event 2). For encod-

ing-retrieval similarity, we selected all correlations between timepoints from a CN or UN encoding event and timepoints correspond-

ing to the recall cue for the same CN or UN character (e.g., Beatrice Event 1 versus Beatrice recall cue). Importantly, all of these cor-

relations were computed across scanning runs (at least two scans apart), such that any effects of temporal autocorrelation would be

minimized. After selecting these specific sets of correlations, we averaged them to derive one condition-specific, timepoint-by-time-

point correlationmatrix for each ROI, for each subject. As described below, within each condition, we then averaged pattern similarity

values (mean Pearson’s r) within empirically-defined epochs (e.g., Boundary epoch).
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Across-event similarity epochs

To test our specific hypotheses about representational similarity involving event boundaries, we computed selective averages of

each condition-specific RSA matrix (described above) based on empirically-derived Boundary and Post-Boundary epochs, which

were then imported into RStudio for statistical analysis. Within each across-event similarity matrix, for each subject and ROI, we

selectively averaged timepoint-by-timepoint correlations between events (Figure 2): Boundary-Boundary similarity, between

TRs +5 to +11 from one event, and the same TRs from the other event; Boundary-Post-Boundary similarity, between TRs +5

to +11 from one event, and TRs +12 to +37 from the other event; and Post-Boundary-Post-Boundary similarity, between TRs +12

to +37 from one event, and the same TRs from the other event. These threemeasures of epoch-by-epoch pattern similarity constitute

the three levels of the ‘‘Epoch’’ factor within mixed models of across-event pattern similarity (see Multi-level mixed-effects models,

below).

Follow-up timepoint-by-timepoint analysis

As shown in Figure S2, we also analyzed timepoint-by-timepoint pattern similarity between pairs of events at encoding, to follow-up

on epoch-based analyses (i.e., to see which timepoints had CN > UN similarity). To assess statistical significance for narrative coher-

ence effects, and to correct for multiple comparisons, we used cluster-based permutation tests78 with 1000 permutations, with a

cluster defining threshold of p = 0.05 (one-tailed, to test for CN > UN similarity) and a cluster mass threshold of p = 0.05. Each pixel

of a statistical comparison (t-value) was converted into a Z value by normalizing it to the mean and standard error generated from our

permutation distributions. Above-threshold (Z > 1.96) pixels and above-threshold clusters are plotted in Figures S2C and S2D.

Encoding-retrieval similarity

Within the right hippocampus, for each encoding event (Event 1 or 2), we selectively averaged timepoint-by-timepoint correlations

between timepoints spanning both Boundary and Post-Boundary epochs at encoding (i.e., the whole event), and any timepoints dur-

ing recall of the same CN or UN character (Figure 3). This yielded two measures of encoding-retrieval similarity: Event 1 Reinstate-

ment and Event 2 Reinstatement. Thesemeasures were specified by a factor of Event Number [Event 1 Reinstatement, Event 2 Rein-

statement] within mixed models (see Multi-level mixed-effects models, below). For ancillary analyses, we also selectively averaged

correlations between recall and the Boundary epoch alone.

Textual similarity analysis
We modeled textual similarity between sentences from different story events using the freely available, ‘‘transformer’’ version of the

Universal Sentence Encoder (USE), a text embedding model designed to convert text into numerical vectors51 (see also, https://ai.

googleblog.com/2018/05/advances-in-semantic-textual-similarity.html). Briefly, the USE uses pre-weighted layers, pre-trained on

an expansive textual database, to transform inputted sentences into 512-dimensional embedding vectors that account for the com-

bination of words, and the respective positions of words, within each sentence. Then, cosine similarity is calculated between each

sentence vector, yielding pairwise measures of textual similarity for all sentences. As such, USE similarity quantifies word- and sen-

tence-level semantic relatedness for text.

For each subject, we created a textual-similarity matrix for cosine similarity between all sentences from all stories. In order to

compare textual similarity with fMRI voxel pattern similarity, we used custom MATLAB code to align the whole USE similarity matrix

with the whole RSM for each subject. Because all sentences were of equivalent lengths (5 s each), we were able to align the time-

course of sentences with the time-course of fMRI scans (1.22 s for each timepoint). However, in order to align the 8-sentence window

with the 40 s window for each event, it was necessary to only include fMRI timepoints that corresponded with that 40 s window.

Therefore, we excluded any timepoints that did not correspond with Boundary or Post-Boundary event epochs (i.e., including

only TRs +5 to +37, 40 s total). The whole USE similarity matrix was upsampled and interpolated from a 5 s/sentence timescale

to match the 1.22 s/TR timescale of the whole RSM. Finally, USE similarity was selectively averaged within each condition of interest

(CN versus UN) and time-window (Boundary-Boundary, Boundary-Post-Boundary, Post-Boundary-Post-Boundary). These aver-

aged USE similarity values were subsequently incorporated into mixed-effects models (see Quantification and statistical analysis,

formula 2, below).

Ancillary analyses
Accounting for pattern similarity during encoding within pattern reinstatement findings

As an additional control, we evaluated whether findings from reinstatement analyses (Figure 3B) were biased by the degree to which

activity patterns overlapped across events during memory encoding (Figure 2B). Even after accounting for pattern similarity at en-

coding within the mixed model formula (see Quantification and statistical analysis, formula 4, below; AIC = �1349.1), reinstatement

was predicted by a significant main effect of Narrative Coherence (F(1,291.90) = 6.28, p = 0.013) and a significant interaction of Narra-

tive Coherence and Event Number (F(1,342.25) = 8.15, p = 0.005; also a significant main effect of encoding-only pattern similarity,

F(1,322.83) = 16.68, p < 0.001).

Accounting for potential outliers within reinstatement-versus-recall findings

As an additional control, we evaluatedwhether the relationship betweenCNEvent 2 reinstatement and recall of CN events (Figure 3C)

was driven by potential outliers. A similar pattern of findings was revealed when excluding events with zero recalled details from the

model (see Quantification and statistical analysis, formula 5, below; AIC = 796.91; significant interaction of Narrative Coherence and

Event 2 Reinstatement, F(1,99.01) = 4.45, p = 0.037). An additional follow-up model excluded potential outliers based on Event 2

reinstatement or recalled details (+/� 3 standard deviations from the mean), and applied a square-root transform to recalled details
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to better approximate normality – this approach also revealed a similar pattern of findings (AIC = 598.65; significant effect of Narrative

Coherence, F(1,154.17) = 6.43, p = 0.012; significant interaction of Narrative Coherence and Event 2 Reinstatement, F(1,154.63) =

5.31, p = 0.023).

Post hoc analyses of cortical networks

Post hoc models (see Quantification and statistical analysis, formula 6, below) accounted for specific epochs and regions of interest

within the PM network (parahippocampal cortex, angular gyrus, posterior medial cortex, medial prefrontal cortex), AT network

(perirhinal cortex, temporal pole, orbitofrontal cortex), and bilateral auditory cortex (left and right transverse temporal gyrus).

Within the PM network, post hoc modeling which accounted for statistical interactions with specific epochs and regions of interest

(AIC =�4372.2) did not reveal a significant effect of Narrative Coherence (F(1,12.35) = 2.20, p = 0.16).Within the AT network, post hoc

modeling (AIC =�5159.5) revealed a significant interaction betweenNarrative Coherence and Epoch (F(2,1727.42) = 6.95, p < 0.001),

and this interaction was driven by significantly higher pattern similarity across CN than UN events within the Post-Boundary-Post-

Boundary epoch alone (Holm-corrected t(24.2) = 3.48, p = 0.02; other ts > 0.065). Within bilateral auditory cortex, post hoc modeling

(AIC = �608.1) revealed a significant main effect of Narrative Coherence (F(1,8.81) = 13.21, p = 0.006).

Additionally, in line with analyses of boundary-evoked hippocampal activation (see Figure S1B), we assessed whether these

cortical networks exhibited activation increases at event boundaries (see Univariate measures of boundary-evoked activation,

above). Only the PM network exhibited significant boundary-evoked activation (TRs +4 to +14; cluster-defining threshold corrected

for multiple comparisons, p < 0.017).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed in R using standard functions t tests, as well as Afex (https://github.com/singmann/afex) for mixed

models and ANOVAs, and Permuco (https://cran.r-project.org/web/packages/permuco/) for permutation tests. For ANOVAs, Green-

house-Geisser correctionswere implemented for any non-sphericity. For visualization (Figure S1), within-subjects standard error was

calculated using Rmisc (https://cran.r-project.org/web/packages/Rmisc/index.html), by normalizing data to remove between-sub-

ject variability, and computing variance from this normalized data.82

Multi-level mixed-effects models
Mixed model formulas are described within the Results. Fixed effects specifications were based on experimental hypotheses, and

random effects structures accounted for effects of individual subjects (‘‘Subject’’) and the content of particular events (‘‘Event Con-

tent’’). For models of across-event similarity at encoding, effects of Event Content (i.e., ‘‘item’’ effects) were operationalized as the

particular pair of events whichwere presented for a particular CN or UN character (e.g., Beatrice Event 1A and Event 2B,Melvin Event

1B and Event 2B; ‘‘A’’ and ‘‘B’’ refer to different possible event versions, based on randomization – see Experimental stimuli, above).

For models of encoding-retrieval similarity or recalled details, Event Content was operationalized as which particular event was being

recalled (e.g., Beatrice Event 1A, Beatrice Event 2B, Melvin Event 1B, or Melvin Event 2B). Random effects structures were specified

by first attempting to fit amaximal random effects structure justified by the experimental design (including random slopes),83 followed

by systematically pruning the random effects structure until themodel convergedwhile avoiding a singular solution (i.e., overfitting).84

Becausemodels which included random slopes either did not converge or reached a singular solution, reportedmodels only included

intercepts for random effects. This approach resulted in the following model formulas:

Formula 1 (Figure 2B): Pattern similarity � Narrative Coherence * Epoch + Overall Boundary Activation + (1 | Subject) + (1 | Event

Content)

Formula 2: Pattern similarity � Narrative Coherence * Epoch + Overall Boundary Activation + USE similarity + (1 | Subject) + (1 |

Event Content)

Formula 3 (Figure 3B): Encoding-retrieval similarity � Narrative Coherence * Event Number + Recall Duration + (1 | Subject) + (1 |

Event Content)

Formula 4 (see Ancillary analyses, above): Encoding-retrieval similarity � Narrative Coherence * Event Number + Encoding-only

pattern similarity + Recall Duration + (1 | Subject) + (1 | Event Content)

Formula 5 (Figure 3C): Recalled details � Event 2 Reinstatement * Narrative Coherence * Event Recalled + Recall duration + (1 |

Subject) + (1 | Event Content)

Formula 6 (see Ancillary analyses, above): Pattern similarity � Narrative Coherence * Epoch * Region of interest (ROI) + (1 |

Subject) + (1 | Event Content)

Model fits were quantified using the Akaike Information Criterion (AIC), and significance for fixed effects was calculated using the

Kenward-Roger approximation for degrees of freedom, which is useful for unbalanced mixed designs.84 To follow up on significant

fixed effects and interactions, we used the emmeans package (https://cran.r-project.org/web/packages/emmeans/index.html) to

conduct pairwise comparisons and visualization of factors (emmeans; Figures 2, 3, and S3) and interactions between factors and

continuous variables (emtrends and emmip; Figure 3C).
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